mmpose系列 (一):hrnet 基于mmpose 训练body+foot 23点关键点

首先Git clone mmpose:  GitHub - open-mmlab/mmpose: OpenMMLab Pose Estimation Toolbox and Benchmark.

然后根据github  安装依赖环境,这里不再赘述。

背景

官方的coco keypoints 是基于17点计算的,coco也给出了coco_whole_body的133个关键点

目的是与openpose 2019的25点作对比,但是目前貌似没有人去复现openpose2019的,本人正在复现的过程的中,后续会给出。但是官方给出的caffemodel 我千方百计的去计算它的mAP 也不停的查阅相关论文。

最后算出的mAP为52.3% 和官方给出的数据差异太大。仔细看看,论文中计算mAP的数据集并不是我测试的基于val2017 全量,而是东抽西抽的coco数据集的子集。

mmpose系列 (一):hrnet 基于mmpose 训练body+foot 23点关键点_第1张图片

 并且看到一片文章在coco_whole_body中计算body的mAP为56.3%

mmpose系列 (一):hrnet 基于mmpose 训练body+foot 23点关键点_第2张图片

 同时我也测了openpose在cocowholebody 中的表现:body为50.2 。

精度很低,但是我需要body+foot的关键点。

基于以上背景,改造23点。

hrnet body+foot

回到mmpose,hrnet 有在coco_whole_body 上进行训练,以及有它的配置文件:

_base_ = [
    '../../../../_base_/default_runtime.py',
    '../../../../_base_/datasets/coco_wholebody.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')

optimizer = dict(
    type='Adam',
    lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
    policy='step',
    warmup=None,
    # warmup='linear',
    # warmup_iters=500,
    # warmup_ratio=0.001,
    step=[170, 200])
total_epochs = 210
channel_cfg = dict(
    num_output_channels=133,
    dataset_joints=133,
    dataset_channel=[
        list(range(133)),
    ],
    inference_channel=list(range(133)))

# model settings
model = dict(
    type='TopDown',
    pretrained='https://download.openmmlab.com/mmpose/'
    'pretrain_models/hrnet_w48-8ef0771d.pth',
    backbone=dict(
        type='HRNet',
        in_channels=3,
        extra=dict(
            stage1=dict(
                num_modules=1,
                num_branches=1,
                block='BOTTLENECK',
                num_blocks=(4, ),
                num_channels=(64, )),
            stage2=dict(
                num_modules=1,
                num_branches=2,
                block='BASIC',
                num_blocks=(4, 4),
                num_channels=(48, 96)),
            stage3=dict(
                num_modules=4,
                num_branches=3,
                block='BASIC',
                num_blocks=(4, 4, 4),
                num_channels=(48, 96, 192)),
            stage4=dict(
                num_modules=3,
                num_branches=4,
                block='BASIC',
                num_blocks=(4, 4, 4, 4),
                num_channels=(48, 96, 192, 384))),
    ),
    keypoint_head=dict(
        type='TopdownHeatmapSimpleHead',
        in_channels=48,
        out_channels=channel_cfg['num_output_channels'],
        num_deconv_layers=0,
        extra=dict(final_conv_kernel=1, ),
        loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
    train_cfg=dict(),
    test_cfg=dict(
        flip_test=True,
        post_process='default',
        shift_heatmap=True,
        modulate_kernel=11))

data_cfg = dict(
    image_size=[288, 384],
    heatmap_size=[72, 96],
    num_output_channels=channel_cfg['num_output_channels'],
    num_joints=channel_cfg['dataset_joints'],
    dataset_channel=channel_cfg['dataset_channel'],
    inference_channel=channel_cfg['inference_channel'],
    soft_nms=False,
    nms_thr=1.0,
    oks_thr=0.9,
    vis_thr=0.2,
    use_gt_bbox=False,
    det_bbox_thr=0.0,
    bbox_file='data/coco/person_detection_results/'
    'COCO_val2017_detections_AP_H_56_person.json',
)

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='TopDownGetBboxCenterScale', padding=1.25),
    dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
    dict(type='TopDownRandomFlip', flip_prob=0.5),
    dict(
        type='TopDownHalfBodyTransform',
        num_joints_half_body=8,
        prob_half_body=0.3),
    dict(
        type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
    dict(type='TopDownAffine'),
    dict(type='ToTensor'),
    dict(
        type='NormalizeTensor',
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]),
    dict(type='TopDownGenerateTarget', sigma=3),
    dict(
        type='Collect',
        keys=['img', 'target', 'target_weight'],
        meta_keys=[
            'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
            'rotation', 'bbox_score', 'flip_pairs'
        ]),
]

val_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='TopDownGetBboxCenterScale', padding=1.25),
    dict(type='TopDownAffine'),
    dict(type='ToTensor'),
    dict(
        type='NormalizeTensor',
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]),
    dict(
        type='Collect',
        keys=['img'],
        meta_keys=[
            'image_file', 'center', 'scale', 'rotation', 'bbox_score',
            'flip_pairs'
        ]),
]

test_pipeline = val_pipeline

data_root = 'data/coco'
data = dict(
    samples_per_gpu=32,
    workers_per_gpu=2,
    val_dataloader=dict(samples_per_gpu=32),
    test_dataloader=dict(samples_per_gpu=32),
    train=dict(
        type='TopDownCocoWholeBodyDataset',
        ann_file=f'{data_root}/annotations/coco_wholebody_train_v1.0.json',
        img_prefix=f'{data_root}/train2017/',
        data_cfg=data_cfg,
        pipeline=train_pipeline,
        dataset_info={{_base_.dataset_info}}),
    val=dict(
        type='TopDownCocoWholeBodyDataset',
        ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
        img_prefix=f'{data_root}/val2017/',
        data_cfg=data_cfg,
        pipeline=val_pipeline,
        dataset_info={{_base_.dataset_info}}),
    test=dict(
        type='TopDownCocoWholeBodyDataset',
        ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
        img_prefix=f'{data_root}/val2017/',
        data_cfg=data_cfg,
        pipeline=test_pipeline,
        dataset_info={{_base_.dataset_info}}),
)

但他是基于133个关键点的,但是分为了 face body hand foot 几个部分,那么就简单了,将数据集的配置文件改为body+foot,并把hrnet 的配置文件也改为body+foot,同时计算mAP的方式也要更改为body+foot。在config目录下重新创建一个body23 文件夹,将config文件复制一份。

一、查看数据集关键点的配置项:

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='TopDownGetBboxCenterScale', padding=1.25),
    dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
    dict(type='TopDownRandomFlip', flip_prob=0.5),
    dict(
        type='TopDownHalfBodyTransform',
        num_joints_half_body=8,
        prob_half_body=0.3),
    dict(
        type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
    dict(type='TopDownAffine'),
    dict(type='ToTensor'),
    dict(
        type='NormalizeTensor',
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]),
    dict(type='TopDownGenerateTarget', sigma=3),
    dict(
        type='Collect',
        keys=['img', 'target', 'target_weight'],
        meta_keys=[
            'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
            'rotation', 'bbox_score', 'flip_pairs'
        ]),
]

val_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='TopDownGetBboxCenterScale', padding=1.25),
    dict(type='TopDownAffine'),
    dict(type='ToTensor'),
    dict(
        type='NormalizeTensor',
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]),
    dict(
        type='Collect',
        keys=['img'],
        meta_keys=[
            'image_file', 'center', 'scale', 'rotation', 'bbox_score',
            'flip_pairs'
        ]),
]

test_pipeline = val_pipeline
data_root = 'data/coco'
data = dict(
    samples_per_gpu=32,
    workers_per_gpu=2,
    val_dataloader=dict(samples_per_gpu=32),
    test_dataloader=dict(samples_per_gpu=32),
    train=dict(
        type='TopDownCocoWholeBodyDataset',
        ann_file=f'{data_root}/annotations/coco_wholebody_train_v1.0.json',
        img_prefix=f'{data_root}/train2017/',
        data_cfg=data_cfg,
        pipeline=train_pipeline,
        dataset_info={{_base_.dataset_info}}),
    val=dict(
        type='TopDownCocoWholeBodyDataset',
        ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
        img_prefix=f'{data_root}/val2017/',
        data_cfg=data_cfg,
        pipeline=val_pipeline,
        dataset_info={{_base_.dataset_info}}),
    test=dict(
        type='TopDownCocoWholeBodyDataset',
        ann_file=f'{data_root}/annotations/coco_wholebody_val_v1.0.json',
        img_prefix=f'{data_root}/val2017/',
        data_cfg=data_cfg,
        pipeline=test_pipeline,
        dataset_info={{_base_.dataset_info}}),
)

这部分是pipeline的配置不需要改动。查看dataload部分也是数据集最关键的部分,也就是代码的最上方 base项:

_base_ = [
    '../../../../_base_/default_runtime.py',
    '../../../../_base_/datasets/coco_wholebody.py'
]

找到coco_wholebody.py文件

dataset_info = dict(
    dataset_name='coco_wholebody',
    paper_info=dict(
        author='Jin, Sheng and Xu, Lumin and Xu, Jin and '
        'Wang, Can and Liu, Wentao and '
        'Qian, Chen and Ouyang, Wanli and Luo, Ping',
        title='Whole-Body Human Pose Estimation in the Wild',
        container='Proceedings of the European '
        'Conference on Computer Vision (ECCV)',
        year='2020',
        homepage='https://github.com/jin-s13/COCO-WholeBody/',
    ),
    keypoint_info={
        0:
        dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''),
        1:
        dict(
            name='left_eye',
            id=1,
            color=[51, 153, 255],
            type='upper',
            swap='right_eye'),
        2:
        dict(
            name='right_eye',
            id=2,
            color=[51, 153, 255],
            type='upper',
            swap='left_eye'),
        3:
        dict(
            name='left_ear',
            id=3,
            color=[51, 153, 255],
            type='upper',
            swap='right_ear'),
        4:
        dict(
            name='right_ear',
            id=4,
            color=[51, 153, 255],
            type='upper',
            swap='left_ear'),
        5:
        dict(
            name='left_shoulder',
            id=5,
            color=[0, 255, 0],
            type='upper',
            swap='right_shoulder'),
        6:
        dict(
            name='right_shoulder',
            id=6,
            color=[255, 128, 0],
            type='upper',
            swap='left_shoulder'),
        7:
        dict(
            name='left_elbow',
            id=7,
            color=[0, 255, 0],
            type='upper',
            swap='right_elbow'),
        8:
        dict(
            name='right_elbow',
            id=8,
            color=[255, 128, 0],
            type='upper',
            swap='left_elbow'),
        9:
        dict(
            name='left_wrist',
            id=9,
            color=[0, 255, 0],
            type='upper',
            swap='right_wrist'),
        10:
        dict(
            name='right_wrist',
            id=10,
            color=[255, 128, 0],
            type='upper',
            swap='left_wrist'),
        11:
        dict(
            name='left_hip',
            id=11,
            color=[0, 255, 0],
            type='lower',
            swap='right_hip'),
        12:
        dict(
            name='right_hip',
            id=12,
            color=[255, 128, 0],
            type='lower',
            swap='left_hip'),
        13:
        dict(
            name='left_knee',
            id=13,
            color=[0, 255, 0],
            type='lower',
            swap='right_knee'),
        14:
        dict(
            name='right_knee',
            id=14,
            color=[255, 128, 0],
            type='lower',
            swap='left_knee'),
        15:
        dict(
            name='left_ankle',
            id=15,
            color=[0, 255, 0],
            type='lower',
            swap='right_ankle'),
        16:
        dict(
            name='right_ankle',
            id=16,
            color=[255, 128, 0],
            type='lower',
            swap='left_ankle'),
        17:
        dict(
            name='left_big_toe',
            id=17,
            color=[255, 128, 0],
            type='lower',
            swap='right_big_toe'),
        18:
        dict(
            name='left_small_toe',
            id=18,
            color=[255, 128, 0],
            type='lower',
            swap='right_small_toe'),
        19:
        dict(
            name='left_heel',
            id=19,
            color=[255, 128, 0],
            type='lower',
            swap='right_heel'),
        20:
        dict(
            name='right_big_toe',
            id=20,
            color=[255, 128, 0],
            type='lower',
            swap='left_big_toe'),
        21:
        dict(
            name='right_small_toe',
            id=21,
            color=[255, 128, 0],
            type='lower',
            swap='left_small_toe'),
        22:
        dict(
            name='right_heel',
            id=22,
            color=[255, 128, 0],
            type='lower',
            swap='left_heel'),
        23:
        dict(
            name='face-0',
            id=23,
            color=[255, 255, 255],
            type='',
            swap='face-16'),
        24:
        dict(
            name='face-1',
            id=24,
            color=[255, 255, 255],
            type='',
            swap='face-15'),
        25:
        dict(
            name='face-2',
            id=25,
            color=[255, 255, 255],
            type='',
            swap='face-14'),
        26:
        dict(
            name='face-3',
            id=26,
            color=[255, 255, 255],
            type='',
            swap='face-13'),
        27:
        dict(
            name='face-4',
            id=27,
            color=[255, 255, 255],
            type='',
            swap='face-12'),
        28:
        dict(
            name='face-5',
            id=28,
            color=[255, 255, 255],
            type='',
            swap='face-11'),
        29:
        dict(
            name='face-6',
            id=29,
            color=[255, 255, 255],
            type='',
            swap='face-10'),
        30:
        dict(
            name='face-7',
            id=30,
            color=[255, 255, 255],
            type='',
            swap='face-9'),
        31:
        dict(name='face-8', id=31, color=[255, 255, 255], type='', swap=''),
        32:
        dict(
            name='face-9',
            id=32,
            color=[255, 255, 255],
            type='',
            swap='face-7'),
        33:
        dict(
            name='face-10',
            id=33,
            color=[255, 255, 255],
            type='',
            swap='face-6'),
        34:
        dict(
            name='face-11',
            id=34,
            color=[255, 255, 255],
            type='',
            swap='face-5'),
        35:
        dict(
            name='face-12',
            id=35,
            color=[255, 255, 255],
            type='',
            swap='face-4'),
        36:
        dict(
            name='face-13',
            id=36,
            color=[255, 255, 255],
            type='',
            swap='face-3'),
        37:
        dict(
            name='face-14',
            id=37,
            color=[255, 255, 255],
            type='',
            swap='face-2'),
        38:
        dict(
            name='face-15',
            id=38,
            color=[255, 255, 255],
            type='',
            swap='face-1'),
        39:
        dict(
            name='face-16',
            id=39,
            color=[255, 255, 255],
            type='',
            swap='face-0'),
        40:
        dict(
            name='face-17',
            id=40,
            color=[255, 255, 255],
            type='',
            swap='face-26'),
        41:
        dict(
            name='face-18',
            id=41,
            color=[255, 255, 255],
            type='',
            swap='face-25'),
        42:
        dict(
            name='face-19',
            id=42,
            color=[255, 255, 255],
            type='',
            swap='face-24'),
        43:
        dict(
            name='face-20',
            id=43,
            color=[255, 255, 255],
            type='',
            swap='face-23'),
        44:
        dict(
            name='face-21',
            id=44,
            color=[255, 255, 255],
            type='',
            swap='face-22'),
        45:
        dict(
            name='face-22',
            id=45,
            color=[255, 255, 255],
            type='',
            swap='face-21'),
        46:
        dict(
            name='face-23',
            id=46,
            color=[255, 255, 255],
            type='',
            swap='face-20'),
        47:
        dict(
            name='face-24',
            id=47,
            color=[255, 255, 255],
            type='',
            swap='face-19'),
        48:
        dict(
            name='face-25',
            id=48,
            color=[255, 255, 255],
            type='',
            swap='face-18'),
        49:
        dict(
            name='face-26',
            id=49,
            color=[255, 255, 255],
            type='',
            swap='face-17'),
        50:
        dict(name='face-27', id=50, color=[255, 255, 255], type='', swap=''),
        51:
        dict(name='face-28', id=51, color=[255, 255, 255], type='', swap=''),
        52:
        dict(name='face-29', id=52, color=[255, 255, 255], type='', swap=''),
        53:
        dict(name='face-30', id=53, color=[255, 255, 255], type='', swap=''),
        54:
        dict(
            name='face-31',
            id=54,
            color=[255, 255, 255],
            type='',
            swap='face-35'),
        55:
        dict(
            name='face-32',
            id=55,
            color=[255, 255, 255],
            type='',
            swap='face-34'),
        56:
        dict(name='face-33', id=56, color=[255, 255, 255], type='', swap=''),
        57:
        dict(
            name='face-34',
            id=57,
            color=[255, 255, 255],
            type='',
            swap='face-32'),
        58:
        dict(
            name='face-35',
            id=58,
            color=[255, 255, 255],
            type='',
            swap='face-31'),
        59:
        dict(
            name='face-36',
            id=59,
            color=[255, 255, 255],
            type='',
            swap='face-45'),
        60:
        dict(
            name='face-37',
            id=60,
            color=[255, 255, 255],
            type='',
            swap='face-44'),
        61:
        dict(
            name='face-38',
            id=61,
            color=[255, 255, 255],
            type='',
            swap='face-43'),
        62:
        dict(
            name='face-39',
            id=62,
            color=[255, 255, 255],
            type='',
            swap='face-42'),
        63:
        dict(
            name='face-40',
            id=63,
            color=[255, 255, 255],
            type='',
            swap='face-47'),
        64:
        dict(
            name='face-41',
            id=64,
            color=[255, 255, 255],
            type='',
            swap='face-46'),
        65:
        dict(
            name='face-42',
            id=65,
            color=[255, 255, 255],
            type='',
            swap='face-39'),
        66:
        dict(
            name='face-43',
            id=66,
            color=[255, 255, 255],
            type='',
            swap='face-38'),
        67:
        dict(
            name='face-44',
            id=67,
            color=[255, 255, 255],
            type='',
            swap='face-37'),
        68:
        dict(
            name='face-45',
            id=68,
            color=[255, 255, 255],
            type='',
            swap='face-36'),
        69:
        dict(
            name='face-46',
            id=69,
            color=[255, 255, 255],
            type='',
            swap='face-41'),
        70:
        dict(
            name='face-47',
            id=70,
            color=[255, 255, 255],
            type='',
            swap='face-40'),
        71:
        dict(
            name='face-48',
            id=71,
            color=[255, 255, 255],
            type='',
            swap='face-54'),
        72:
        dict(
            name='face-49',
            id=72,
            color=[255, 255, 255],
            type='',
            swap='face-53'),
        73:
        dict(
            name='face-50',
            id=73,
            color=[255, 255, 255],
            type='',
            swap='face-52'),
        74:
        dict(name='face-51', id=74, color=[255, 255, 255], type='', swap=''),
        75:
        dict(
            name='face-52',
            id=75,
            color=[255, 255, 255],
            type='',
            swap='face-50'),
        76:
        dict(
            name='face-53',
            id=76,
            color=[255, 255, 255],
            type='',
            swap='face-49'),
        77:
        dict(
            name='face-54',
            id=77,
            color=[255, 255, 255],
            type='',
            swap='face-48'),
        78:
        dict(
            name='face-55',
            id=78,
            color=[255, 255, 255],
            type='',
            swap='face-59'),
        79:
        dict(
            name='face-56',
            id=79,
            color=[255, 255, 255],
            type='',
            swap='face-58'),
        80:
        dict(name='face-57', id=80, color=[255, 255, 255], type='', swap=''),
        81:
        dict(
            name='face-58',
            id=81,
            color=[255, 255, 255],
            type='',
            swap='face-56'),
        82:
        dict(
            name='face-59',
            id=82,
            color=[255, 255, 255],
            type='',
            swap='face-55'),
        83:
        dict(
            name='face-60',
            id=83,
            color=[255, 255, 255],
            type='',
            swap='face-64'),
        84:
        dict(
            name='face-61',
            id=84,
            color=[255, 255, 255],
            type='',
            swap='face-63'),
        85:
        dict(name='face-62', id=85, color=[255, 255, 255], type='', swap=''),
        86:
        dict(
            name='face-63',
            id=86,
            color=[255, 255, 255],
            type='',
            swap='face-61'),
        87:
        dict(
            name='face-64',
            id=87,
            color=[255, 255, 255],
            type='',
            swap='face-60'),
        88:
        dict(
            name='face-65',
            id=88,
            color=[255, 255, 255],
            type='',
            swap='face-67'),
        89:
        dict(name='face-66', id=89, color=[255, 255, 255], type='', swap=''),
        90:
        dict(
            name='face-67',
            id=90,
            color=[255, 255, 255],
            type='',
            swap='face-65'),
        91:
        dict(
            name='left_hand_root',
            id=91,
            color=[255, 255, 255],
            type='',
            swap='right_hand_root'),
        92:
        dict(
            name='left_thumb1',
            id=92,
            color=[255, 128, 0],
            type='',
            swap='right_thumb1'),
        93:
        dict(
            name='left_thumb2',
            id=93,
            color=[255, 128, 0],
            type='',
            swap='right_thumb2'),
        94:
        dict(
            name='left_thumb3',
            id=94,
            color=[255, 128, 0],
            type='',
            swap='right_thumb3'),
        95:
        dict(
            name='left_thumb4',
            id=95,
            color=[255, 128, 0],
            type='',
            swap='right_thumb4'),
        96:
        dict(
            name='left_forefinger1',
            id=96,
            color=[255, 153, 255],
            type='',
            swap='right_forefinger1'),
        97:
        dict(
            name='left_forefinger2',
            id=97,
            color=[255, 153, 255],
            type='',
            swap='right_forefinger2'),
        98:
        dict(
            name='left_forefinger3',
            id=98,
            color=[255, 153, 255],
            type='',
            swap='right_forefinger3'),
        99:
        dict(
            name='left_forefinger4',
            id=99,
            color=[255, 153, 255],
            type='',
            swap='right_forefinger4'),
        100:
        dict(
            name='left_middle_finger1',
            id=100,
            color=[102, 178, 255],
            type='',
            swap='right_middle_finger1'),
        101:
        dict(
            name='left_middle_finger2',
            id=101,
            color=[102, 178, 255],
            type='',
            swap='right_middle_finger2'),
        102:
        dict(
            name='left_middle_finger3',
            id=102,
            color=[102, 178, 255],
            type='',
            swap='right_middle_finger3'),
        103:
        dict(
            name='left_middle_finger4',
            id=103,
            color=[102, 178, 255],
            type='',
            swap='right_middle_finger4'),
        104:
        dict(
            name='left_ring_finger1',
            id=104,
            color=[255, 51, 51],
            type='',
            swap='right_ring_finger1'),
        105:
        dict(
            name='left_ring_finger2',
            id=105,
            color=[255, 51, 51],
            type='',
            swap='right_ring_finger2'),
        106:
        dict(
            name='left_ring_finger3',
            id=106,
            color=[255, 51, 51],
            type='',
            swap='right_ring_finger3'),
        107:
        dict(
            name='left_ring_finger4',
            id=107,
            color=[255, 51, 51],
            type='',
            swap='right_ring_finger4'),
        108:
        dict(
            name='left_pinky_finger1',
            id=108,
            color=[0, 255, 0],
            type='',
            swap='right_pinky_finger1'),
        109:
        dict(
            name='left_pinky_finger2',
            id=109,
            color=[0, 255, 0],
            type='',
            swap='right_pinky_finger2'),
        110:
        dict(
            name='left_pinky_finger3',
            id=110,
            color=[0, 255, 0],
            type='',
            swap='right_pinky_finger3'),
        111:
        dict(
            name='left_pinky_finger4',
            id=111,
            color=[0, 255, 0],
            type='',
            swap='right_pinky_finger4'),
        112:
        dict(
            name='right_hand_root',
            id=112,
            color=[255, 255, 255],
            type='',
            swap='left_hand_root'),
        113:
        dict(
            name='right_thumb1',
            id=113,
            color=[255, 128, 0],
            type='',
            swap='left_thumb1'),
        114:
        dict(
            name='right_thumb2',
            id=114,
            color=[255, 128, 0],
            type='',
            swap='left_thumb2'),
        115:
        dict(
            name='right_thumb3',
            id=115,
            color=[255, 128, 0],
            type='',
            swap='left_thumb3'),
        116:
        dict(
            name='right_thumb4',
            id=116,
            color=[255, 128, 0],
            type='',
            swap='left_thumb4'),
        117:
        dict(
            name='right_forefinger1',
            id=117,
            color=[255, 153, 255],
            type='',
            swap='left_forefinger1'),
        118:
        dict(
            name='right_forefinger2',
            id=118,
            color=[255, 153, 255],
            type='',
            swap='left_forefinger2'),
        119:
        dict(
            name='right_forefinger3',
            id=119,
            color=[255, 153, 255],
            type='',
            swap='left_forefinger3'),
        120:
        dict(
            name='right_forefinger4',
            id=120,
            color=[255, 153, 255],
            type='',
            swap='left_forefinger4'),
        121:
        dict(
            name='right_middle_finger1',
            id=121,
            color=[102, 178, 255],
            type='',
            swap='left_middle_finger1'),
        122:
        dict(
            name='right_middle_finger2',
            id=122,
            color=[102, 178, 255],
            type='',
            swap='left_middle_finger2'),
        123:
        dict(
            name='right_middle_finger3',
            id=123,
            color=[102, 178, 255],
            type='',
            swap='left_middle_finger3'),
        124:
        dict(
            name='right_middle_finger4',
            id=124,
            color=[102, 178, 255],
            type='',
            swap='left_middle_finger4'),
        125:
        dict(
            name='right_ring_finger1',
            id=125,
            color=[255, 51, 51],
            type='',
            swap='left_ring_finger1'),
        126:
        dict(
            name='right_ring_finger2',
            id=126,
            color=[255, 51, 51],
            type='',
            swap='left_ring_finger2'),
        127:
        dict(
            name='right_ring_finger3',
            id=127,
            color=[255, 51, 51],
            type='',
            swap='left_ring_finger3'),
        128:
        dict(
            name='right_ring_finger4',
            id=128,
            color=[255, 51, 51],
            type='',
            swap='left_ring_finger4'),
        129:
        dict(
            name='right_pinky_finger1',
            id=129,
            color=[0, 255, 0],
            type='',
            swap='left_pinky_finger1'),
        130:
        dict(
            name='right_pinky_finger2',
            id=130,
            color=[0, 255, 0],
            type='',
            swap='left_pinky_finger2'),
        131:
        dict(
            name='right_pinky_finger3',
            id=131,
            color=[0, 255, 0],
            type='',
            swap='left_pinky_finger3'),
        132:
        dict(
            name='right_pinky_finger4',
            id=132,
            color=[0, 255, 0],
            type='',
            swap='left_pinky_finger4')
    },
    skeleton_info={
        0:
        dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
        1:
        dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
        2:
        dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
        3:
        dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
        4:
        dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
        5:
        dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
        6:
        dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
        7:
        dict(
            link=('left_shoulder', 'right_shoulder'),
            id=7,
            color=[51, 153, 255]),
        8:
        dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
        9:
        dict(
            link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
        10:
        dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
        11:
        dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
        12:
        dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]),
        13:
        dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
        14:
        dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
        15:
        dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]),
        16:
        dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]),
        17:
        dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]),
        18:
        dict(
            link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]),
        19:
        dict(link=('left_ankle', 'left_big_toe'), id=19, color=[0, 255, 0]),
        20:
        dict(link=('left_ankle', 'left_small_toe'), id=20, color=[0, 255, 0]),
        21:
        dict(link=('left_ankle', 'left_heel'), id=21, color=[0, 255, 0]),
        22:
        dict(
            link=('right_ankle', 'right_big_toe'), id=22, color=[255, 128, 0]),
        23:
        dict(
            link=('right_ankle', 'right_small_toe'),
            id=23,
            color=[255, 128, 0]),
        24:
        dict(link=('right_ankle', 'right_heel'), id=24, color=[255, 128, 0]),
        25:
        dict(
            link=('left_hand_root', 'left_thumb1'), id=25, color=[255, 128,
                                                                  0]),
        26:
        dict(link=('left_thumb1', 'left_thumb2'), id=26, color=[255, 128, 0]),
        27:
        dict(link=('left_thumb2', 'left_thumb3'), id=27, color=[255, 128, 0]),
        28:
        dict(link=('left_thumb3', 'left_thumb4'), id=28, color=[255, 128, 0]),
        29:
        dict(
            link=('left_hand_root', 'left_forefinger1'),
            id=29,
            color=[255, 153, 255]),
        30:
        dict(
            link=('left_forefinger1', 'left_forefinger2'),
            id=30,
            color=[255, 153, 255]),
        31:
        dict(
            link=('left_forefinger2', 'left_forefinger3'),
            id=31,
            color=[255, 153, 255]),
        32:
        dict(
            link=('left_forefinger3', 'left_forefinger4'),
            id=32,
            color=[255, 153, 255]),
        33:
        dict(
            link=('left_hand_root', 'left_middle_finger1'),
            id=33,
            color=[102, 178, 255]),
        34:
        dict(
            link=('left_middle_finger1', 'left_middle_finger2'),
            id=34,
            color=[102, 178, 255]),
        35:
        dict(
            link=('left_middle_finger2', 'left_middle_finger3'),
            id=35,
            color=[102, 178, 255]),
        36:
        dict(
            link=('left_middle_finger3', 'left_middle_finger4'),
            id=36,
            color=[102, 178, 255]),
        37:
        dict(
            link=('left_hand_root', 'left_ring_finger1'),
            id=37,
            color=[255, 51, 51]),
        38:
        dict(
            link=('left_ring_finger1', 'left_ring_finger2'),
            id=38,
            color=[255, 51, 51]),
        39:
        dict(
            link=('left_ring_finger2', 'left_ring_finger3'),
            id=39,
            color=[255, 51, 51]),
        40:
        dict(
            link=('left_ring_finger3', 'left_ring_finger4'),
            id=40,
            color=[255, 51, 51]),
        41:
        dict(
            link=('left_hand_root', 'left_pinky_finger1'),
            id=41,
            color=[0, 255, 0]),
        42:
        dict(
            link=('left_pinky_finger1', 'left_pinky_finger2'),
            id=42,
            color=[0, 255, 0]),
        43:
        dict(
            link=('left_pinky_finger2', 'left_pinky_finger3'),
            id=43,
            color=[0, 255, 0]),
        44:
        dict(
            link=('left_pinky_finger3', 'left_pinky_finger4'),
            id=44,
            color=[0, 255, 0]),
        45:
        dict(
            link=('right_hand_root', 'right_thumb1'),
            id=45,
            color=[255, 128, 0]),
        46:
        dict(
            link=('right_thumb1', 'right_thumb2'), id=46, color=[255, 128, 0]),
        47:
        dict(
            link=('right_thumb2', 'right_thumb3'), id=47, color=[255, 128, 0]),
        48:
        dict(
            link=('right_thumb3', 'right_thumb4'), id=48, color=[255, 128, 0]),
        49:
        dict(
            link=('right_hand_root', 'right_forefinger1'),
            id=49,
            color=[255, 153, 255]),
        50:
        dict(
            link=('right_forefinger1', 'right_forefinger2'),
            id=50,
            color=[255, 153, 255]),
        51:
        dict(
            link=('right_forefinger2', 'right_forefinger3'),
            id=51,
            color=[255, 153, 255]),
        52:
        dict(
            link=('right_forefinger3', 'right_forefinger4'),
            id=52,
            color=[255, 153, 255]),
        53:
        dict(
            link=('right_hand_root', 'right_middle_finger1'),
            id=53,
            color=[102, 178, 255]),
        54:
        dict(
            link=('right_middle_finger1', 'right_middle_finger2'),
            id=54,
            color=[102, 178, 255]),
        55:
        dict(
            link=('right_middle_finger2', 'right_middle_finger3'),
            id=55,
            color=[102, 178, 255]),
        56:
        dict(
            link=('right_middle_finger3', 'right_middle_finger4'),
            id=56,
            color=[102, 178, 255]),
        57:
        dict(
            link=('right_hand_root', 'right_ring_finger1'),
            id=57,
            color=[255, 51, 51]),
        58:
        dict(
            link=('right_ring_finger1', 'right_ring_finger2'),
            id=58,
            color=[255, 51, 51]),
        59:
        dict(
            link=('right_ring_finger2', 'right_ring_finger3'),
            id=59,
            color=[255, 51, 51]),
        60:
        dict(
            link=('right_ring_finger3', 'right_ring_finger4'),
            id=60,
            color=[255, 51, 51]),
        61:
        dict(
            link=('right_hand_root', 'right_pinky_finger1'),
            id=61,
            color=[0, 255, 0]),
        62:
        dict(
            link=('right_pinky_finger1', 'right_pinky_finger2'),
            id=62,
            color=[0, 255, 0]),
        63:
        dict(
            link=('right_pinky_finger2', 'right_pinky_finger3'),
            id=63,
            color=[0, 255, 0]),
        64:
        dict(
            link=('right_pinky_finger3', 'right_pinky_finger4'),
            id=64,
            color=[0, 255, 0])
    },
    joint_weights=[1.] * 133,
    # 'https://github.com/jin-s13/COCO-WholeBody/blob/master/'
    # 'evaluation/myeval_wholebody.py#L175'
    sigmas=[
        0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062,
        0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089, 0.068, 0.066, 0.066,
        0.092, 0.094, 0.094, 0.042, 0.043, 0.044, 0.043, 0.040, 0.035, 0.031,
        0.025, 0.020, 0.023, 0.029, 0.032, 0.037, 0.038, 0.043, 0.041, 0.045,
        0.013, 0.012, 0.011, 0.011, 0.012, 0.012, 0.011, 0.011, 0.013, 0.015,
        0.009, 0.007, 0.007, 0.007, 0.012, 0.009, 0.008, 0.016, 0.010, 0.017,
        0.011, 0.009, 0.011, 0.009, 0.007, 0.013, 0.008, 0.011, 0.012, 0.010,
        0.034, 0.008, 0.008, 0.009, 0.008, 0.008, 0.007, 0.010, 0.008, 0.009,
        0.009, 0.009, 0.007, 0.007, 0.008, 0.011, 0.008, 0.008, 0.008, 0.01,
        0.008, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024, 0.035,
        0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032, 0.02, 0.019,
        0.022, 0.031, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024,
        0.035, 0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032, 0.02,
        0.019, 0.022, 0.031
    ])

复制一份命名为coco_body23.py

对他进行更改,我只需要body+foot,其他的对应的都不要,修改后为:这里提醒一句

simga值为每个关键点各自的数据集标准差,COCO上是对同⼀个目标的5000次不同标注产生的标准差。其值越大,说明在整个数据集中对这个点的标注一致性越差; 值越小,说明整个数据集中对这个点的标注一致性越好。

dataset_info = dict(
    dataset_name='coco_body25',
    paper_info=dict(
        author='Jin, Sheng and Xu, Lumin and Xu, Jin and '
        'Wang, Can and Liu, Wentao and '
        'Qian, Chen and Ouyang, Wanli and Luo, Ping',
        title='Whole-Body Human Pose Estimation in the Wild',
        container='Proceedings of the European '
        'Conference on Computer Vision (ECCV)',
        year='2020',
        homepage='https://github.com/jin-s13/COCO-WholeBody/',
    ),
    keypoint_info={
        0:
        dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''),
        1:
        dict(
            name='left_eye',
            id=1,
            color=[51, 153, 255],
            type='upper',
            swap='right_eye'),
        2:
        dict(
            name='right_eye',
            id=2,
            color=[51, 153, 255],
            type='upper',
            swap='left_eye'),
        3:
        dict(
            name='left_ear',
            id=3,
            color=[51, 153, 255],
            type='upper',
            swap='right_ear'),
        4:
        dict(
            name='right_ear',
            id=4,
            color=[51, 153, 255],
            type='upper',
            swap='left_ear'),
        5:
        dict(
            name='left_shoulder',
            id=5,
            color=[0, 255, 0],
            type='upper',
            swap='right_shoulder'),
        6:
        dict(
            name='right_shoulder',
            id=6,
            color=[255, 128, 0],
            type='upper',
            swap='left_shoulder'),
        7:
        dict(
            name='left_elbow',
            id=7,
            color=[0, 255, 0],
            type='upper',
            swap='right_elbow'),
        8:
        dict(
            name='right_elbow',
            id=8,
            color=[255, 128, 0],
            type='upper',
            swap='left_elbow'),
        9:
        dict(
            name='left_wrist',
            id=9,
            color=[0, 255, 0],
            type='upper',
            swap='right_wrist'),
        10:
        dict(
            name='right_wrist',
            id=10,
            color=[255, 128, 0],
            type='upper',
            swap='left_wrist'),
        11:
        dict(
            name='left_hip',
            id=11,
            color=[0, 255, 0],
            type='lower',
            swap='right_hip'),
        12:
        dict(
            name='right_hip',
            id=12,
            color=[255, 128, 0],
            type='lower',
            swap='left_hip'),
        13:
        dict(
            name='left_knee',
            id=13,
            color=[0, 255, 0],
            type='lower',
            swap='right_knee'),
        14:
        dict(
            name='right_knee',
            id=14,
            color=[255, 128, 0],
            type='lower',
            swap='left_knee'),
        15:
        dict(
            name='left_ankle',
            id=15,
            color=[0, 255, 0],
            type='lower',
            swap='right_ankle'),
        16:
        dict(
            name='right_ankle',
            id=16,
            color=[255, 128, 0],
            type='lower',
            swap='left_ankle'),
        17:
        dict(
            name='left_big_toe',
            id=17,
            color=[255, 128, 0],
            type='lower',
            swap='right_big_toe'),
        18:
        dict(
            name='left_small_toe',
            id=18,
            color=[255, 128, 0],
            type='lower',
            swap='right_small_toe'),
        19:
        dict(
            name='left_heel',
            id=19,
            color=[255, 128, 0],
            type='lower',
            swap='right_heel'),
        20:
        dict(
            name='right_big_toe',
            id=20,
            color=[255, 128, 0],
            type='lower',
            swap='left_big_toe'),
        21:
        dict(
            name='right_small_toe',
            id=21,
            color=[255, 128, 0],
            type='lower',
            swap='left_small_toe'),
        22:
        dict(
            name='right_heel',
            id=22,
            color=[255, 128, 0],
            type='lower',
            swap='left_heel')
    },
    skeleton_info={
        0:
        dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
        1:
        dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
        2:
        dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
        3:
        dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
        4:
        dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
        5:
        dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
        6:
        dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
        7:
        dict(
            link=('left_shoulder', 'right_shoulder'),
            id=7,
            color=[51, 153, 255]),
        8:
        dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
        9:
        dict(
            link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
        10:
        dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
        11:
        dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
        12:
        dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]),
        13:
        dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
        14:
        dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
        15:
        dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]),
        16:
        dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]),
        17:
        dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]),
        18:
        dict(
            link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]),
        19:
        dict(link=('left_ankle', 'left_big_toe'), id=19, color=[0, 255, 0]),
        20:
        dict(link=('left_ankle', 'left_small_toe'), id=20, color=[0, 255, 0]),
        21:
        dict(link=('left_ankle', 'left_heel'), id=21, color=[0, 255, 0]),
        22:
        dict(
            link=('right_ankle', 'right_big_toe'), id=22, color=[255, 128, 0]),
        23:
        dict(
            link=('right_ankle', 'right_small_toe'),
            id=23,
            color=[255, 128, 0]),
        24:
        dict(link=('right_ankle', 'right_heel'), id=24, color=[255, 128, 0]),
    },
    joint_weights=[1.] * 23,
    # 'https://github.com/jin-s13/COCO-WholeBody/blob/master/'
    # 'evaluation/myeval_wholebody.py#L175'
    sigmas=[
        0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062,
        0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089, 0.068, 0.066, 0.066,
        0.092, 0.094, 0.094
    ])


二、dataset mAP

因为mmpose有注册机制因此在这建议先不要setup.py 更改后再setup.py。在build下的mmpose没有build 直接在根目录下的mmpose文件夹中找到datasets/datasets/topdown 下新建个top-down-cocobody23-datasets.py

# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings

import numpy as np
from mmcv import Config
from xtcocotools.cocoeval import COCOeval

from ...builder import DATASETS
from .topdown_coco_dataset import TopDownCocoDataset


@DATASETS.register_module()
class TopDownCocoBody25Dataset(TopDownCocoDataset):
    """CocoWholeBodyDataset dataset for top-down pose estimation.

    "Whole-Body Human Pose Estimation in the Wild", ECCV'2020.
    More details can be found in the `paper
    `__ .

    The dataset loads raw features and apply specified transforms
    to return a dict containing the image tensors and other information.

    COCO-WholeBody keypoint indexes::

        0-16: 17 body keypoints,
        17-22: 6 foot keypoints,

        In total, we have 23 keypoints for body25 pose estimation.

    Args:
        ann_file (str): Path to the annotation file.
        img_prefix (str): Path to a directory where images are held.
            Default: None.
        data_cfg (dict): config
        pipeline (list[dict | callable]): A sequence of data transforms.
        dataset_info (DatasetInfo): A class containing all dataset info.
        test_mode (bool): Store True when building test or
            validation dataset. Default: False.
    """

    def __init__(self,
                 ann_file,
                 img_prefix,
                 data_cfg,
                 pipeline,
                 dataset_info=None,
                 test_mode=False):

        if dataset_info is None:
            warnings.warn(
                'dataset_info is missing. '
                'Check https://github.com/open-mmlab/mmpose/pull/663 '
                'for details.', DeprecationWarning)
            cfg = Config.fromfile('configs/_base_/datasets/coco_body25.py')
            dataset_info = cfg._cfg_dict['dataset_info']

        super(TopDownCocoDataset, self).__init__(
            ann_file,
            img_prefix,
            data_cfg,
            pipeline,
            dataset_info=dataset_info,
            test_mode=test_mode)

        self.use_gt_bbox = data_cfg['use_gt_bbox']
        self.bbox_file = data_cfg['bbox_file']
        self.det_bbox_thr = data_cfg.get('det_bbox_thr', 0.0)
        self.use_nms = data_cfg.get('use_nms', True)
        self.soft_nms = data_cfg['soft_nms']
        self.nms_thr = data_cfg['nms_thr']
        self.oks_thr = data_cfg['oks_thr']
        self.vis_thr = data_cfg['vis_thr']

        self.body_num = 17
        self.foot_num = 6


        self.db = self._get_db()

        print(f'=> num_images: {self.num_images}')
        print(f'=> load {len(self.db)} samples')

    def _load_coco_keypoint_annotation_kernel(self, img_id):
        """load annotation from COCOAPI.

        Note:
            bbox:[x1, y1, w, h]
        Args:
            img_id: coco image id
        Returns:
            dict: db entry
        """
        img_ann = self.coco.loadImgs(img_id)[0]
        width = img_ann['width']
        height = img_ann['height']
        num_joints = self.ann_info['num_joints']

        ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=False)
        objs = self.coco.loadAnns(ann_ids)

        # sanitize bboxes
        valid_objs = []
        for obj in objs:
            if 'bbox' not in obj:
                continue
            x, y, w, h = obj['bbox']
            x1 = max(0, x)
            y1 = max(0, y)
            x2 = min(width - 1, x1 + max(0, w))
            y2 = min(height - 1, y1 + max(0, h))
            if ('area' not in obj or obj['area'] > 0) and x2 > x1 and y2 > y1:
                obj['clean_bbox'] = [x1, y1, x2 - x1, y2 - y1]
                valid_objs.append(obj)
        objs = valid_objs

        rec = []
        bbox_id = 0
        for obj in objs:
            if 'keypoints' not in obj:
                continue
            if max(obj['keypoints']) == 0:
                continue
            joints_3d = np.zeros((num_joints, 3), dtype=np.float32)
            joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32)

            keypoints = np.array(obj['keypoints'] + obj['foot_kpts']).reshape(-1, 3)
            joints_3d[:, :2] = keypoints[:, :2]
            joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3] > 0)

            image_file = os.path.join(self.img_prefix, self.id2name[img_id])
            rec.append({
                'image_file': image_file,
                'bbox': obj['clean_bbox'][:4],
                'rotation': 0,
                'joints_3d': joints_3d,
                'joints_3d_visible': joints_3d_visible,
                'dataset': self.dataset_name,
                'bbox_score': 1,
                'bbox_id': bbox_id
            })
            bbox_id = bbox_id + 1

        return rec

    def _coco_keypoint_results_one_category_kernel(self, data_pack):
        """Get coco keypoint results."""
        cat_id = data_pack['cat_id']
        keypoints = data_pack['keypoints']
        cat_results = []

        for img_kpts in keypoints:
            if len(img_kpts) == 0:
                continue

            _key_points = np.array(
                [img_kpt['keypoints'] for img_kpt in img_kpts])
            key_points = _key_points.reshape(-1,
                                             self.ann_info['num_joints'] * 3)

            cuts = np.cumsum([
                0, self.body_num, self.foot_num
            ]) * 3

            result = [{
                'image_id': img_kpt['image_id'],
                'category_id': cat_id,
                'keypoints': key_point[cuts[0]:cuts[1]].tolist(),
                'foot_kpts': key_point[cuts[1]:cuts[2]].tolist(),
                'score': float(img_kpt['score']),
                'center': img_kpt['center'].tolist(),
                'scale': img_kpt['scale'].tolist()
            } for img_kpt, key_point in zip(img_kpts, key_points)]

            cat_results.extend(result)

        return cat_results

    def _do_python_keypoint_eval(self, res_file):
        """Keypoint evaluation using COCOAPI."""
        coco_det = self.coco.loadRes(res_file)

        cuts = np.cumsum([
            0, self.body_num, self.foot_num
        ])

        coco_eval = COCOeval(
            self.coco,
            coco_det,
            'keypoints_body',
            self.sigmas[cuts[0]:cuts[1]],
            use_area=True)
        coco_eval.params.useSegm = None
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()

        coco_eval = COCOeval(
            self.coco,
            coco_det,
            'keypoints_foot',
            self.sigmas[cuts[1]:cuts[2]],
            use_area=True)
        coco_eval.params.useSegm = None
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()

        stats_names = [
            'AP', 'AP .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
            'AR .75', 'AR (M)', 'AR (L)'
        ]

        info_str = list(zip(stats_names, coco_eval.stats))

        return info_str

在几层的__init__.py 中导入此包。就如下图

mmpose系列 (一):hrnet 基于mmpose 训练body+foot 23点关键点_第3张图片

 然后通过mmpose 官方给的训练代码进行训练。

训练了120个epoch:

 和论文在body上的效果差不多了

mmpose系列 (一):hrnet 基于mmpose 训练body+foot 23点关键点_第4张图片

 我整合了body+foot的整个mAP而不是body mAP+foot mAP如下:

mmpose系列 (一):hrnet 基于mmpose 训练body+foot 23点关键点_第5张图片

下一篇mmpose(2):复现知乎大佬mmpose中的shufflenetv2+deeppose的方法

你可能感兴趣的:(人体姿态估计,mmpose,深度学习,人工智能,计算机视觉)