- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- 揭秘图像LLM:从像素到语言的智能转换
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython计算机视觉深度学习人工智能机器学习算法语言模型
图像LLM是怎么工作图像LLM(多模态大语言模型)的核心是将图像转化为语言模型能理解的“语言”,并与文本深度融合。以下结合CLIP、DALL-E、GPT-4V等主流模型,通过具体例子说明其工作机制:一、图像→特征向量:从像素到“密码”例子:识别“戴墨镜的猫”视觉编码器提取特征使用ResNet或ViT(VisionTransformer)作为图像编码器,将图片分解为局部像素块(如16x16像素)。每
- 【机器学习】解密计算机视觉:CNN、目标检测与图像识别核心技术(第25天)
吴师兄大模型
0基础实现机器学习入门到精通机器学习计算机视觉cnn人工智能目标检测图像识别pytorch
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- LLM(大语言模型)能识别图像的核心原因:图像和文本记性特征识别且对其
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型人工智能自然语言处理算法均值算法prompt
LLM(大语言模型)能识别图像的核心原因:图像和文本记性特征识别且对其在于跨模态对齐技术——通过训练将图像和文本映射到同一语义空间,使语言模型能够理解视觉信息。一、为什么LLM能识别图像?核心技术原理1.跨模态对齐:让图像与文本说同一种语言向量空间统一:图像通过CNN或ViT编码为特征向量(如512维),文本通过Transformer编码为语义向量(如768维)。CLIP等模型通过对比学习优化编码
- PyTorch+CNN进行猫狗识别项目
任务介绍数据结构为:big_data├──train│└──cat│└──XXX.jpg(每个文件夹含若干张图像)│└──dog│└──XXX.jpg(每个文件夹含若干张图像)├──val│└──cat│└──XXX.jpg(每个文件夹含若干张图像)│└──dog└─────└──XXX.jpg(每个文件夹含若干张图像)需要对train数据集进行训练,达到给定val数据集中的一张猫/狗的图片,识别
- MATLAB 实现 SRCNN 图像超分辨率重建
leo__520
matlab超分辨率重建开发语言
SRCNN代码实现。该代码使用三层卷积神经网络,进行图像的超分辨率重建,效果比双三次插值好很多SRCNN/Readme.txt,1494SRCNN/SRCNN.m,1267SRCNN/Set14/baboon.bmp,720054SRCNN/Set14/barbara.bmp,1244214SRCNN/Set14/bridge.bmp,263222SRCNN/Set14/coastguard.bm
- 视频讲解:多层感知机MLP与卷积神经网络CNN在服装图像识别中的应用
原文链接:https://tecdat.cn/?p=42891原文出处:拓端数据部落公众号分析师:ZiqiYe视频讲解:多层感知机MLP与卷积神经网络CNN在服装图像识别中的应用作为数据科学领域的从业者,我们常面临这样的挑战:如何让机器真正“看懂”图像中的信息?在为客户完成服装零售行业的图像识别时,这一问题尤为突出。追溯图像识别技术的发展,早期依赖人工设计特征,如边缘检测、纹理分析等,效率低下且适
- Python实现基于POA-CNN-LSTM-Attention鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行多变量回归预测的详细项目实例
nantangyuxi
Python算法神经网络python人工智能深度学习目标检测机器学习
目录Python实她基她POA-CNN-LSTM-Attentikon鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行她变量回归预测她详细项目实例...1项目背景介绍...1项目目标她意义...1提升她变量回归预测精度...2优化模型训练效率...2python复制ikmpoxtos#操作系统接口,用她环境管理和文件操作ikmpoxtqaxnikngs#警告管理模块,控制运行时警
- Python训练打卡Day46
编程有点难
Python学习笔记python开发语言
通道注意力(SE注意力)知识点回顾:不同CNN层的特征图:不同通道的特征图什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。通道注意力:模型的定义和插入的位置通道注意力后的特征图和热力图注意力机制:一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。transformer中的叫做自注意力机制,他是一种自己学习自己的
- 60天python训练营打卡day46
学习目标:60天python训练营打卡学习内容:DAY46通道注意力(SE注意力)知识点回顾:1.不同CNN层的特征图:不同通道的特征图2.什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。3.通道注意力:模型的定义和插入的位置4.通道注意力后的特征图和热力图学习时间:2025.06.29@浙大疏锦行
- Python 训练营打卡 Day 50
2401_86382089
Python打卡python
预训练模型CBAM注意力现在我们思考下,是否可以对于预训练模型增加模块来优化其效果,这里我们会遇到一个问题:预训练模型的结构和权重是固定的,如果修改其中的模型结构,是否会大幅影响其性能。其次是训练的时候如何训练才可以更好的避免破坏原有的特征提取器的参数。所以今天的内容,我们需要回答2个问题。resnet18中如何插入cbam模块?采用什么样的预训练策略,能够更好的提高效率?可以很明显的想到,如果是
- Python训练营打卡 Day50
预训练模型+CBAM模块知识点回顾:resnet结构解析CBAM放置位置的思考针对预训练模型的训练策略差异化学习率三阶段微调预训练模型+CBAM模块知识点回顾ResNet结构解析残差块:ResNet的核心是残差块,它通过残差连接解决了深层网络的梯度消失问题。残差块允许梯度直接传播到后面的层,从而使得网络能够训练得更深。网络结构:ResNet由多个残差块组成,每个残差块包含两个或三个卷积层,以及一个
- 超轻量级中文OCR项目使用教程
甄墨疆
超轻量级中文OCR项目使用教程chineseocr_lite超轻量级中文ocr,支持竖排文字识别,支持ncnn、mnn、tnn推理(dbnet(1.8M)+crnn(2.5M)+anglenet(378KB))总模型仅4.7M项目地址:https://gitcode.com/gh_mirrors/ch/chineseocr_lite1.项目介绍本项目是一个超轻量级的中文OCR(OpticalCha
- 李宏毅2025《机器学习》第四讲-Transformer架构的演进
Transformer架构的演进与替代方案:从RNN到Mamba的技术思辨Transformer作为当前AI领域的标准架构,其设计并非凭空而来,也并非没有缺点。本次讨论的核心便是:新兴的架构,如MAMA,是如何针对Transformer的弱点进行改进,并试图提供一个更优的解决方案的。要理解架构的演进,我们必须首先明确一个核心原则:每一种神经网络架构,都有其存在的技术理由。CNN(卷积神经网络):为
- 机器学习19-Transformer和AlexNet思考
坐吃山猪
机器学习机器学习transformer人工智能
Transformer和AlexNet思考关于Transformer和AlexNet发展的一些思考1-核心知识点Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?AlexNet的主要核心思路是什么,为什么表现那么好?现在有什么比AlexNet更优秀的算法2-思路整理1-Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?Word2Vec的作用Word2
- 文末含资料链接!YOLOv11性能飞跃:深度融合iRMB注意力机制,实战教程助你突破检测极限!
博导ai君
深度学习教学-附源码YOLO
文章目录1.介绍:揭秘iRMB——轻量化与高性能的完美融合1.1摘要:洞察iRMB的设计哲学与卓越表现1.2简单描述:深入剖析iRMB的构造与工作原理核心灵感:CNN与Transformer的珠联璧合iRMB的核心结构:短距离与长距离的协同设计理念:实用、统一、有效、高效1.3模块结构:iRMB的内部构造图(概念描述)2.代码解析:逐行揭秘iRMB的魔法2.1`LayerNorm2d`:为2D数据
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 典型的几种神经网络
Victor Zhong
AI框架神经网络人工智能深度学习
骨干网络CNN(卷积神经网络)RNN(循环神经网络)三级目录CNN(卷积神经网络)包括输入层、隐藏层、输出层:输入层一般为一张图片(w,h,d),输入层数据一般要做归一化处理;隐藏层包含特有的卷积层(卷积核有权重系数)、池化层(没有权重系数)、全连接层,还有残差块?和Inception模块?。;输出层:RNN(循环神经网络)单向的RNN示意图:三级目录
- 60天python训练计划----day51
尘浮728
python开发语言
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高importosimporttorchimporttorch.nnasnnimporttorch.optimasoptimimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transfor
- python训练60天挑战-day51
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高kaggl的一个图像数据集;数据集地址:LungNoduleMalignancy肺结核良恶性判断三层卷积CNN做到的精度63%,现在需要实现提高。importosimportpandasaspdimportnumpyasnpfromsklearn.model_se
- DAY 51 复习日
忧陌606
Python打卡python
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高(一)Day43代码importosimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimporttorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.
- 【python深度学习】DAY 51 复习日
抽风的雨610
【打卡】Python训练营python深度学习开发语言
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高1.读取数据使用CIFAR-10图像数据importtorchfromtorchvisionimportdatasets,transforms#数据预处理transform=transforms.Compose([transforms.ToTensor(),transforms.
- Day51 复习日-模型改进
cylat
python打卡机器学习人工智能python神经网络深度学习
day43对自己找的数据集用简单cnn训练,现在用预训练,加入注意力等importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transforms,modelsfromtorch.utils.dataimportDataLoader,random_splitimportmatplotlib
- 目标检测新纪元:DETR到Mamba实战解析
加油吧zkf
图像处理python分类人工智能目标检测
【实战分享】目标检测的“后DEⱯ”时代:DETR/DINO/RT-DETR及新型骨干网络探索(含示例代码)目标检测从YOLO、FasterR-CNN到Transformer结构的DETR,再到DINO、RT-DETR,近两年出现了许多新趋势:更高效的端到端结构、更少的手工设计(比如不再需要NMS)、以及新型轻量化骨干网络(比如Mamba、ConvNeXt、ViT等)被引入检测任务中。作为从事目标检
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- 计算机视觉中的Transformer:ViT模型详解与代码实现
AI大模型应用工坊
计算机视觉transformer人工智能ai
计算机视觉中的Transformer:ViT模型详解与代码实现关键词:计算机视觉、Transformer、ViT、自注意力机制、图像分块摘要:传统卷积神经网络(CNN)统治计算机视觉领域多年,但2020年一篇《AnImageisWorth16x16Words:TransformersforImageRecognitionatScale》的论文打破了这一格局——它将NLP领域的Transformer
- 遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法
神经网络15044
仿真模型神经网络深度学习深度学习分类cnn算法网络集成学习数据挖掘
遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法1.任务概述岩性分类是地质遥感的核心任务,旨在通过遥感影像识别地表岩石类型。本文使用ASTER(多光谱热辐射传感器)和Sentinel(多光谱成像卫星)数据,采用卷积神经网络(CNN)及CNN-集成学习(CNN-EL)方法实现高精度岩性分类。2.数据预处理2.1数据源说明ASTER数据:14个波段(VNIR/SWIR/TIR),分辨率
- Python训练营-Day41
m0_72314023
python深度学习神经网络
#原始模型(2层卷积)classOriginalCNN(nn.Module):def__init__(self):super().__init__()self.conv1=nn.Conv2d(1,16,3)self.conv2=nn.Conv2d(16,32,3)self.fc=nn.Linear(32*5*5,10)defforward(self,x):x=torch.relu(self.con
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后