【动手学习pytorch笔记】24.门控循环单元GRU

GRU

序列中并不是所有信息都同等重要,为了记住重要的信息和遗忘不重要的信息,最早的方法是”长短期记忆”(long-short-term memory,LSTM),这节门控循环单元(gated recurrent unit,GRU)是一个稍微简化的变体,通常能够提供同等的效果, 并且计算的速度明显更快。

理论

两个门(和隐藏状态类似)

重置门(虫豸们~)

R t = σ ( X t W x r + H t − 1 W h r + b r ) R_t = \sigma(X_tW_{xr}+H_{t-1}W_{hr}+b_r) Rt=σ(XtWxr+Ht1Whr+br)

更新门

Z t = σ ( X t W x z + H t − 1 W h z + b z ) Z_t = \sigma(X_tW_{xz}+H_{t-1}W_{hz}+b_z) Zt=σ(XtWxz+Ht1Whz+bz)

候选隐状态

H t ~ = t a n h ( X t W x h + ( R t ⋅ H t − 1 ) W h h + b h ) \tilde{H_t} =tanh(X_tW_{xh}+(R_t\cdot H_{t-1})W_{hh}+b_h) Ht~=tanh(XtWxh+(RtHt1)Whh+bh) ⋅ \cdot Hadamard积:对应数值做乘法

隐藏状态

H t = Z t ⋅ H t − 1 + ( 1 − Z t ) ⋅ H t ~ H_t = Z_t\cdot H_{t-1}+(1-Z_t)\cdot\tilde{H_t} Ht=ZtHt1+(1Zt)Ht~

重置门和更新们是和隐藏状态 H t H_t Ht大小相同的向量(这里说的向量是忽略批量大小说的)

极端情况下,重置门=1,更新门=0,就是RNN

【动手学习pytorch笔记】24.门控循环单元GRU_第1张图片

总结:简单来说,如果理解RNN的话,GRU其实非常好懂,RNN用了一个隐藏状态,GRU用了差不多的两个门来控制隐藏状态(因为两个门是sigmoid算出来的 [0, 1] 之间,和 H t H_t Ht做数值乘法能够有削弱作用,以此达到控制效果),学习哪些信息是有用的,哪些是没用的,也因此GRU的参数数量是RNN的三倍(这里不考虑输出层前的那个线性层)

代码

读数据集

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

初始化参数

def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    W_xh, W_hh, b_h = three()  # 候选隐状态参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

和RNN差不多,但是因为多了两个门,所以我们封装一个函数three(),一共11个参数,都需要求梯度

初始化隐藏状态

def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

和RNN一样,一个turple

正向传播过程

def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

套公式

训练

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,
                            init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

因为之前RNN的训练函数我们封装的很好,很通用

RNNModelScratch(len(vocab), num_hiddens, device, get_params,init_gru_state, gru)传入这三个参数就行

训练效果

perplexity 1.1, 21648.1 tokens/sec on cuda:0
time traveller for so it will be convenient to speak of himwas e
travelleryou can show black is white by argument said filby

【动手学习pytorch笔记】24.门控循环单元GRU_第2张图片

简易实现

num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
net = d2l.RNNModel(gru_layer, len(vocab))
net = net.to(device)
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
perplexity 1.1, 154909.2 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
travelleryou can show black is white by argument said filby

【动手学习pytorch笔记】24.门控循环单元GRU_第3张图片

你可能感兴趣的:(pytorch学习笔记,pytorch,深度学习,rnn,学习,gru)