多项式曲线拟合 c语言6,多项式曲线拟合

利用多项式函数拟合数据点,多项式函数形式如下:

则多项式函数可化为线性代数形式:

为了评价拟合函数的优劣,需要建立损失函数,测量每个样本点目标值与预测值之间的误差,拟合的目标是让误差最小。计算误差时使用均方根误差

最小二乘法

为了取得误差函数的最小值,直接令函数的导数等于0,可以得到唯一解。此解称为解析解。

不带正则项的解析解

误差函数为:

对其求导得:

令导数等于0,得:

可以通过矩阵运算直接目标函数:W = (X.T * X).I * X.T * T

随着阶数越高,误差越小,但是过拟合越来越严重:

观察计算出来的W,会看到,阶数越高,多项式的系数越大的离谱

为了解决过拟合问题,可以增加样本数据,也可以加入正则项(惩罚项)

下图为9阶多项式在n = 15, 30, 60, 100时的拟合情况,可以看到曲线随着数据的增加拟合得越接近正弦曲线。

带正则项的解析解

误差函数变成:

这里的m+1为W中元素的个数,,主要是为了平衡高阶多项式项更多带来的影响,不加对下面W的求解也没有影响

,也就是正则系数,是一个超参数,需要设置一个较好的值才能得到较好的结果。这里取的是0.005

求导:

求出W:

同样可以直接由矩阵运算求得W = (X.T * X + lambda * np.eye(m+1)).I * X.T * T

由于加上了正则项,高阶多项式没有出现明显的过拟合

多项式系数的大小也较为正常:

最小二乘法看似简单,但是涉及到矩阵求逆运算,当数据规模较大时,矩阵求逆速度较慢,因此需要其他优化方法,如梯度下降法,共轭梯度法,牛顿法等。

梯度下降法

梯度下降法的原理可以看这篇文章:深入浅出--梯度下降法及其实现

拟合的目标时让误差函数值最小,也就是找函数图像的最低点,沿着曲线梯度的反方向一直走,一定会走到一个局部最低点,也就是局部最优解,在二次型,即为全局最优解。

def gradient(W, X, T):

'''在带正则项的最小二乘函数中计算W处的梯度'''

return (1 / X.shape[1]) * (X.T * X * W - X.T * T + lambd * W)

def gradient_descent(X, T: '目标值', learning_rate):

'''进行梯度下降的迭代'''

# 初始化W为全为0的列向量

W = np.mat(np.zeros(X.shape[1])).T

grad = gradient(W, X, T)

while np.all(np.absolute(grad) > 1e-9):

W = W - learning_rate * grad

grad = gradient(W, X, T)

return W

拟合的曲线与带正则项的解析解几乎一致

但是阶数越高,迭代的次数越多,速度越慢,进行十几万次迭代的时间约为十几秒

阶数

0

1

2

3

4

5

6

迭代次数

28

352

8337

93643

133747

160849

181179

共轭梯度法

该方法解决的是二次函数极值问题

其中Q为正定矩阵,本问题中

共轭梯度法每次沿着一个方向找到该方向的极小值,后面在沿着其他方向求极小值,由于寻找的方向两两共轭,后面的查找不会影响前面已经查找过的方向的最小值,理论上n次求极小值就可以得到n为问题的极小值。

共轭梯度法理解起来比较难,不过编程实现按步骤来就可以了:

def conjugate_gradient(X, T):

'''进行共轭梯度下降的迭代'''

Q = (1 / X.shape[1]) * (X.T * X + lambd * np.mat(np.eye(X.shape[1])))

W = np.mat(np.zeros(X.shape[1])).T

r = -gradient(W, X, T)

p = r

for i in range(1, X.shape[1]):

a = float((r.T * r) / (p.T * Q * p))

r_prev = r

W = W + a * p

r = r - a * Q * p

p = r + float((r.T * r) / (r_prev.T * r_prev)) * p

return W

共轭梯度法拟合的情况也很好,几乎与带正则项的解析解相同,并且速度要比梯度下降法快很多。

附:矩阵求导用到的公式有

(A为对称矩阵)

你可能感兴趣的:(多项式曲线拟合,c语言6)