- Day31-【AI思考】-关键支点识别与战略聚焦框架
一个一定要撑住的学习者
#AI深度思考学习方法人工智能
文章目录关键支点识别与战略聚焦框架**第一步:支点目标四维定位法****第二步:支点验证里程碑设计****第三步:目标网络重构方案****第四步:动态监控仪表盘**执行工具箱核心心法关键支点识别与战略聚焦框架让思想碎片重焕生机的灵魂:在当前纷繁复杂的目标清单中,哪一项是只要达成就能引发其他目标多米诺式突破的关键支点?这个支点是否具备可被验证的阶段性里程碑?”这个问题像精准的手术刀,旨在帮助您:识别
- python兼容性问题_uibot中使用python扩展之兼容性问题
weixin_39654903
python兼容性问题
总结了一下,需要注意的两个点。关于python扩展文件语法以及其导入的第三方包版本问题在ub代码中引用python扩展时,需要确保引用的.py文件语法能够被ub内置的python识别,比如creator5.1.1版本内置的是python3.7,如果你是用python2的语法就会出现兼容问题同样的,当你使用的python扩展中导入了自行安装的第三方python包时,你需要确保该第三方扩展包对应的py
- Faceboxes pytorch代码解读(一) box_utils.py(上篇)
Faded浩
pytorch深度学习神经网络python算法
Faceboxespytorch代码解读(一)box_utils.py(上篇)有幸读到ShifengZhang老师团队的人脸检测论文,感觉对自己的人脸学习论文十分有帮助。通过看别人的paper,学习别人的代码,能够使得我们对人脸检测算法的学习有更近一步的理解。但是在学习的时候发现,自己看别人的代码是一个耗时而又头疼的事情。毕竟每个人的思路都不一样,跟着别人的思路走确实不容易。所以希望能够分享一下自
- 自动化测试-短信验证码处理
weixin_30719711
数据库测试c/c++
之前接触的的验证码都是图形验证码,可以借助图片识别来实现,不过识别率不太高后又研究绕过验证码实现登录。最近有遇到短信验证码的问题,网上看了有各种处理方法。1、cookie登录自己先尝试了,使用cookie登录的方法,具体详见代码1、获取cookie#FileName:VerifyCodeLogin.py#Author:Adil#DateTime:2018/4/913:09#SoftWare:PyC
- ISBN 号码——蓝桥杯
走啦小孩
算法c++蓝桥杯数据结构
1.题目描述每一本正式出版的图书都有一个ISBN号码与之对应,ISBN码包括9位数字、1位识别码和3位分隔符,其规定格式如“x-xxx-xxxxx-x”,其中符号“-”是分隔符(键盘上的减号),最后一位是识别码,例如0-670-82162-4就是一个标准的ISBN码。ISBN码的首位数字表示书籍的出版语言,例如0代表英语;第一个分隔符“-”之后的三位数字代表出版社,例如670代表维京出版社;第二个
- 跨平台物联网漏洞挖掘算法评估框架设计与实现申报书上
XLYcmy
漏洞挖掘网络安全漏洞挖掘物联网项目申报跨架构静态分析固件
本研究的研究目的主要有以下两个:1、基于此领域的相关方法,通过实验找出各个架构的最优方法2、通过设计实验,比较跨架构解决方案和各架构最优方法组合解决方案在函数识别、漏洞挖掘上的优劣性一、项目技术路线(1)构建统一规范全面的多架构物联网设备二进制程序数据集(2)针对跨架构下的二进制程序,利用逆向工具提取为图、抽象语法树等中间语言,对于不同中间语言,选择合适的深度学习方法提取出中间语言数据结构的特征,
- 自学记录鸿蒙API 13:实现人脸比对Core Vision Face Comparator
李游Leo
harmonyos鸿蒙harmonyos华为
完成了文本识别和人脸检测的项目后,我发现人脸比对是一个更有趣的一个小技术玩意儿。我决定整一整,也就是对HarmonyOSNext最新版本API13中的CoreVisionFaceComparatorAPI的学习,这项技术能够对人脸进行高精度比对,并给出相似度评分,判断是否为同一人。于是,我决定基于这个API开发一个简单的人脸比对小工具。开始我的开发之旅应用场景的思考学习之前,我花了一些时间思考人脸
- 基于Pyhton的人脸识别(Python 3.12+face_recognition库)
F2022697486
python人工智能开发语言
使用Python进行人脸编码和比较简介在这个教程中,我们将学习如何使用Python和face_recognition库来加载图像、提取人脸编码,并比较两个人脸是否相似。face_recognition库是一个强大的工具,它基于dlib的深度学习模型,可以轻松实现人脸检测和识别功能。本教程适合初学者,我们将通过一个简单的项目来了解这个库的基本用法和环境配置。代码示例importface_recogn
- 基于深度学习的大规模模型训练
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的大规模模型训练涉及训练具有数百万甚至数十亿参数的深度神经网络,以处理复杂的任务,如自然语言处理、计算机视觉和语音识别。以下是关于基于深度学习的大规模模型训练的详细介绍:1.背景和动机数据和模型规模增长:随着数据量和模型复杂度的增加,传统的单机或小规模集群训练难以满足需求。计算资源需求:大规模模型训练需要大量计算资源和存储,单一设备无法满足。任务复杂性:处理复杂任务(如GPT-3、BE
- 联想r720安装固态_联想拯救者R720-15IKBN笔记本加装SSD不识别的案例
weixin_39999859
联想r720安装固态
故障现象客户送修拯救者R720-15IKBN笔记本,称自己购买的SSD不能识别,工程师加装超极盘SSD时不能确定方案;解决方案已经确认主机标配接口为M.2(NGFF2280)规格;测试联想加速度C80,C80Ls在此机器上均不能识别;因为此机型只支持PCI-E协议SSD,使用联想加速度E80S可以正常识别使用(31070553:加速度-超极盘升级E80s128G,可供参考);如下图为随机带的SSD
- YOLOv10改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含二次独家创新
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文记录的是利用大核选择模块LSK优化YOLOv10的目标检测网络模型。在大尺寸图像中的小目标检测任务中,一直是个难题,无法仅基于外观实现较好的识别,因此需要广泛的上下文信息进行辅助。但不同物体所需的上下文信息范围不同,为了更好地对这些特性进行建模,本文利用大核选择模块二次创新C3k2,使模型能够产生具有各种大感受野的多个特征的同时,动态地根据输入调整模型的行为,使网络更好地适应图像中
- AI大模型在智能客服系统中的应用
季风泯灭的季节
AI大模型应用技术二人工智能
目录引言1.基于大模型的智能客服系统架构2.对话生成与上下文管理对话生成上下文管理3.提高客服系统响应精度的策略1.使用专门训练的数据集2.引入实体识别和意图分类3.反馈循环和持续优化4.AI大模型在企业中的优化与调优策略1.模型微调(Fine-tuning)2.模型蒸馏(ModelDistillation)3.响应延迟优化4.持续监控与反馈结论引言随着人工智能(AI)技术的不断发展,AI大模型在
- yolov8使用Python训练识别
枫林古月
YOLO从零开始YOLOpython开发语言
环境要求:根据《yolov8训练环境搭建》搭建好运行环境参考文献:1、yolo官方文档python版本:https://docs.ultralytics.com/usage/python/2、github文档https://github.com/ultralytics/ultralytics/blob/main/README.zh-CN.md3、标定源数据的生成使用labelImg来标定类别,输出
- 基于深度学习的行人检测与识别系统:YOLOv5、YOLOv8、YOLOv10与UI界面的实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
引言行人检测与识别技术作为计算机视觉领域的一个重要应用,广泛应用于智能监控、自动驾驶、公共安全等多个领域。行人检测系统的目标是通过图像或视频中的内容,自动识别并定位行人,这项任务在复杂环境中面临着不同的挑战,如多样的行人姿态、遮挡、光照变化等。近年来,深度学习的进步,尤其是目标检测领域的快速发展,为行人检测提供了强有力的支持。YOLO(YouOnlyLookOnce)系列模型,作为目前目标检测领域
- 基于深度学习的行人检测识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
1.引言行人检测与识别是计算机视觉中的一个重要领域,广泛应用于安防监控、智能交通、自动驾驶等多个领域。传统的行人检测方法面临着许多挑战,如低光照、复杂背景、遮挡等问题。随着深度学习技术的迅猛发展,基于卷积神经网络(CNN)的方法,尤其是YOLO(YouOnlyLookOnce)系列算法,在行人检测中取得了显著的效果。YOLOv8作为YOLO系列的最新版本,继承了YOLO一贯的高效性和准确性,在速度
- 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型
坐望云起
深度学习从入门到精通机器学习深度学习语音识别光谱图Whisper
一、简述语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1.音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2.预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3.特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。4.模型训练:在特征提取完
- 毕业设计项目 深度学习人体目标检测
bee_dc
毕业设计毕设大数据
1简介今天学长向大家介绍一个机器视觉的毕设项目,基于深度学习的人体目标检测算法研究与实现项目运行效果:毕业设计深度学习行人目标检测系统项目分享:见文末!2目标检测概念普通的深度学习监督算法主要是用来做分类,如图1所示,分类的目标是要识别出图中所示是一只猫。在ILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)竞赛以及实际的应用中,还包括目标定位和
- 分享求职时遇到的一道面试题
C7211BA
面试CV机器学习深度学习项目
测试题如下:百度的旋转认证码识别注意,完成后qq远程或者微信视频或者向日葵远程看结果一、准备:看看下面测试网址是否能正常打开https://wappass.baidu.com/static/captcha/tuxing.html?&logid=11395969898338055067&ak=248b24c134a6b4f52ee85f8b9577d4a8&backurl=https%3A%2F%2
- 19、智能驾驶信息安全要求
OEM的牛马DRE
智能驾驶控制器硬件介绍网络服务器运维人工智能
信息安全要求:1.不应存在后门或隐蔽接口要求:系统或设备的设计、开发和生产过程中,应确保不存在任何未经授权或未公开的接口(即后门或隐蔽接口)。这些接口可能会被恶意用户或攻击者利用,绕过正常的安全机制,对系统或设备造成损害或窃取敏感信息。建议:在系统或设备的设计阶段,应进行全面的安全审查,确保所有接口都是明确且文档化的。在开发和测试过程中,应使用专业的安全工具和技术来检测和识别任何潜在的后门或隐蔽接
- 【Node.js】Koa2 整合接口文档
秀秀_heo
Node.js后端开发node.js
部分学习来源:https://blog.csdn.net/qq_38734862/article/details/107715579依赖//koa2-swagger-uiUI视图组件swagger-jsdoc识别写的/***/转jsonnpminstallkoa2-swagger-uiswagger-jsdoc--save配置config\swaggerConfig.jsconstRouter=r
- 探索人脸识别的奥秘:基于OpenCV和Python的开源项目推荐
杭劲钰Majestic
探索人脸识别的奥秘:基于OpenCV和Python的开源项目推荐【下载地址】毕业设计-基于OpenCV和Python的人脸识别本项目源码是针对毕业生设计的一套完整的人脸识别系统,利用先进的OpenCV库结合Python编程语言实现。该项目旨在提供一个易于理解、便于修改和移植的基础框架,非常适合计算机科学及相关专业的学生作为毕业设计或课程项目使用。系统不仅涵盖了基本的人脸检测与识别功能,其简洁的代码
- 【架构学习(二)】架构设计流程
llbnk
架构学习架构学习
文章目录前言架构设计三原则一、架构设计流程:识别复杂度二、架构设计流程:设计备选方案三、架构设计流程:评估和选择备选方案四、架构设计流程:详细方案设计五、例子:前浪微博识别复杂度设计备选方案评估和选择备选方案细化设计点总结我的目标前言作为后端开发应该对整体系统架构有一定了解。所以需要学习有关软件系统架构知识。我采用读书的方式去了解整体软件系统架构,所读书名《从零开始学架构》。学习目标:1.架构设计
- YOLOv5:目标检测新星,解锁高性能实时识别
殷连靖Harlan
YOLOv5:目标检测新星,解锁高性能实时识别【下载地址】yolov5改进策略案例分析资源合集YOLOv5,作为目标检测领域的一颗明星,基于经典的YOLOv4算法进行了一系列创新性优化,显著提升了检测速度与精度。本资源集合深入解析YOLOv5的设计理念与技术细节,旨在帮助开发者和研究者更全面地理解并应用这些进步。从数据预处理到网络架构设计,再到后处理策略,我们逐一探讨其核心改进之处项目地址:htt
- 【升级!解锁 27 种文件格式,处理效率狂飙】
努力的小好
python音视频
升级!解锁27种文件格式,处理效率狂飙前言新增与优化功能详解代码深度解析GUI界面构建与交互逻辑多线程处理与消息队列机制文件处理核心逻辑如图所示注意事项前言这一版本的升级力度堪称全面且深入,在文件格式支持上,从原先有限的几种格式拓展到了涵盖图片、文档、视频在内的27种常见格式,无论是日常办公文档,还是珍藏的高清视频,都能精准识别处理。大文件处理方面,通过增大读取缓冲区和添加哈希计算进度日志,大幅提
- 《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
空云风语
神经网络人工智能web安全运维人工智能开源网络安全web安全网络攻击模型安全威胁分析
DeepSeek网页/API性能异常(DeepSeekWeb/APIDegradedPerformance)订阅已识别-已识别问题,并且正在实施修复。1月29,2025-20:57CST更新-我们将继续监控任何其他问题。1月28,2025-22:30CSTUpdate-近期DeepSeek线上服务受到大规模恶意攻击,注册可能繁忙,请稍等重试。已注册用户可以正常登录,感谢理解和支持。由于DeepSe
- 【Elasticsearch 】悬挂索引(Dangling Indices)
risc123456
Elasticsearchelasticsearch大数据搜索引擎
Elasticsearch悬挂索引(DanglingIndices)解析与管理1.悬挂索引的定义悬挂索引(DanglingIndices)是指存在于节点上但未被集群元数据识别的索引分片。这些索引分片不会参与到集群的正常索引操作中。2.悬挂索引的产生原因悬挂索引通常由以下几种情况产生:节点离线后重新加入集群:当某个节点因故障(如宕机)暂时离开集群,而该节点上存有的某些索引分片在集群的其他节点上没有副
- 单位订餐系统小程序技术开发架构功能分析
v.15889726201
大数据数据库
单位订餐系统功能包括:用户管理功能菜品展示与管理功能订餐流程功能订单管理功能配送管理功能反馈与评价功能数据管理与报表功能。一、用户管理功能员工信息维护:存储员工姓名、工号、部门、联系方式等基本信息,便于识别订餐人员身份与所属部门,利于后续统计分析与配送安排。例如新员工入职时自动录入信息,员工信息变更可及时更新。角色权限设置:划分普通员工、管理员、食堂工作人员等角色。普通员工可下单、查看订单状态与历
- [特殊字符]【计算机视觉必杀技】三行代码实现文档智能校正(附完整代码)
我的青春不太冷
计算机视觉人工智能科技学习Pythonopencv
文章目录基于四点透视变换的文档图像校正技术1.实现效果2.技术原理2.1透视变换数学模型2.2算法流程3.核心代码解析3.1.1坐标点排序3.1.2透视变换矩阵4.实验结果分析4.1中间过程可视化4.2性能指标5.应用场景5.1纸质文档电子化5.2车牌识别预处理5.3AR场景平面检测5.4工业视觉中的平面定位6.总实现代码7.结论基于四点透视变换的文档图像校正技术在计算机视觉领域,图像几何变换是实
- python 使用Whisper模型进行语音翻译
哦里 哦里哦里给
AI大语言模型实战pythonwhisper
目录一、Whisper是什么?二、Whisper的基本命令行用法三、代码实践四、是否保留Token标记五、翻译长度问题六、性能分析一、Whisper是什么?Whisper是由OpenAI开源的一个自动语音识别(AutomaticSpeechRecognition,ASR)系统。它的主要特点是:多语言支持:它本身就能识别几十种语言,包括中文。多尺寸预训练模型:官方提供了5个不同大小的模型(tiny,
- 讯飞绘镜(ai生成视频)技术浅析(三):自然语言处理(NLP)
爱研究的小牛
AIGC—视频AIGC—自然语言处理自然语言处理人工智能自然语言处理AIGC深度学习
1.技术架构概述讯飞绘镜的NLP技术架构可以分为以下几个核心模块:语义分析:理解用户输入的文本,提取关键信息(如实体、事件、情感等)。情节理解:分析文本中的故事情节,识别事件序列和逻辑关系。人物关系建模:识别文本中的人物及其关系,构建人物关系图。场景生成:根据情节和人物关系生成场景描述。每个模块都依赖于先进的深度学习模型和算法,以下将逐一详细讲解。2.语义分析语义分析的目标是从用户输入的文本中提取
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR