from_logits=True

BinaryCrossentropy class

tf.keras.losses.BinaryCrossentropy(
    from_logits=False, label_smoothing=0, reduction="auto", name="binary_crossentropy"
)

Computes the cross-entropy loss between true labels and predicted labels.

Use this cross-entropy loss for binary (0 or 1) classification applications. The loss function requires the following inputs:

  • y_true (true label): This is either 0 or 1.
  • y_pred (predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a logit, (i.e, value in [-inf, inf] when from_logits=True) or a probability (i.e, value in [0., 1.] when from_logits=False).

搬运说得很清楚了,logit 和 probability的区别:

logit: 输出是[-\infty ,+\infty]

probability:[0,1]

  • reduction:类型为tf.keras.losses.Reduction,对loss进行处理,默认是求平均;
  • name: op的name

CategoricalCrossentropy class

tf.keras.losses.CategoricalCrossentropy(
    from_logits=False,
    label_smoothing=0,
    reduction="auto",
    name="categorical_crossentropy",
)

Computes the crossentropy loss between the labels and predictions.

Use this crossentropy loss function when there are two or more label classes. We expect labels to be provided in a one_hot representation. If you want to provide labels as integers, please use SparseCategoricalCrossentropy loss. There should be # classes floating point values per feature.

In the snippet below, there is # classes floating pointing values per example. The shape of both y_predand y_true are [batch_size, num_classes].

对应二分类,这个categoricalCrossentropy是用于多分类。标签需要是one_hot。如果不是one_hot,可以用SparseCategoricalCrossentropy loss。


keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.99, epsilon=1e-08, decay=0.0)
  • lr:float> = 0.学习率
  • beta_1:float,0
  • beta_2:float,0
  • epsilon:float> = 0,模糊因子。如果None,默认为K.epsilon()。该参数是非常小的数,其为了防止在实现中除以零
  • decay:float> = 0,每次更新时学习率下降
     

学习率决定了学习进程的快慢(也可以看作步幅的大小)。如果学习率过大,很可能会越过最优值,反而如果学习率过小,优化的效率可能很低,导致过长的运算时间,Adam大概的思想是开始的学习率设置为一个较大的值,然后根据次数的增多,动态的减小学习率,以实现效率和效果的兼得。
 

你可能感兴趣的:(T型牌坊,keras,tensorflow)