2019独角兽企业重金招聘Python工程师标准>>>
知乎上有一个问题,内容是已知空间三个点的坐标,求三个点所构成的圆的圆心坐标(编程实现)?
根据圆的定义,这道题的核心就是找到一个点,到已知的三个点的距离相等,利用数学知识可以求解如下:
例如 :给定a(x1,y1) b(x2,y2) c(x3,y3)求外接圆心坐标O(x,y)
1. 首先,外接圆的圆心是三角形三条边的垂直平分线的交点,我们根据圆心到顶点的距离相等,可以列出以下方程:
(x1-x)*(x1-x)+(y1-y)*(y1-y)=(x2-x)*(x2-x)+(y2-y)*(y2-y);
(x2-x)*(x2-x)+(y2-y)*(y2-y)=(x3-x)*(x3-x)+(y3-y)*(y3-y);
2.化简得到:
2*(x2-x1)*x+2*(y2-y1)y=x2^2+y2^2-x1^2-y1^2;
2*(x3-x2)*x+2*(y3-y2)y=x3^2+y3^2-x2^2-y2^2;
令:A1=2*(x2-x1);
B1=2*(y2-y1);
C1=x2^2+y2^2-x1^2-y1^2;
A2=2*(x3-x2);
B2=2*(y3-y2);
C2=x3^2+y3^2-x2^2-y2^2;
即:A1*x+B1y=C1;
A2*x+B2y=C2;
3.最后根据克拉默法则:
x=((C1*B2)-(C2*B1))/((A1*B2)-(A2*B1));
y=((A1*C2)-(A2*C1))/((A1*B2)-(A2*B1));
当然,我们今天不是来学习数学公式和数学推导的。Tensorflow是google开源的一款深度学习的工具,其实我们可以利用Tensoflow提供了强大的数学计算能力来求解类似的数学问题。
这道题,我们可以利用梯度下降算法,因为圆心是一个最优解,任何其它点都不满条件。(前提是这三个点不在一条直线上,否则是没有解的)
好了,我们先看代码先,然后在解释。
import tensorflow as tf
import numpy
# Parameters
learning_rate = 0.1
training_epochs = 3000
display_step = 50
# Training Data, 3 points that form a triangel
train_X = numpy.asarray([3.0,6.0,9.0])
train_Y = numpy.asarray([7.0,9.0,7.0])
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set vaibale for center
cx = tf.Variable(3, name="cx",dtype=tf.float32)
cy = tf.Variable(3, name="cy",dtype=tf.float32)
# Caculate the distance to the center and make them as equal as possible
distance = tf.pow(tf.add(tf.pow((X-cx),2),tf.pow((Y-cy),2)),0.5)
mean = tf.reduce_mean(distance)
cost = tf.reduce_sum(tf.pow((distance-mean),2)/3)
# Gradient descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
sess.run(optimizer, feed_dict={X: train_X, Y: train_Y})
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
if (c - 0) < 0.0000000001:
break
#Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
m = sess.run(mean, feed_dict={X: train_X, Y:train_Y})
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"CX=", sess.run(cx), "CY=", sess.run(cy), "Mean=", "{:.9f}".format(m)
print "Optimization Finished!"
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print "Training cost=", training_cost, "CX=", round(sess.run(cx),2), "CY=", round(sess.run(cy),2), "R=", round(m,2), '\n'
运行以上的python代码,结果如下:
Epoch: 0050 cost= 0.290830940 CX= 5.5859795 CY= 2.6425467 Mean= 5.657848835
Epoch: 0100 cost= 0.217094064 CX= 5.963002 CY= 3.0613017 Mean= 5.280393124
Epoch: 0150 cost= 0.173767462 CX= 5.997781 CY= 3.5245996 Mean= 4.885882378
Epoch: 0200 cost= 0.126330480 CX= 5.9999194 CY= 4.011508 Mean= 4.485837936
Epoch: 0250 cost= 0.078660280 CX= 5.9999976 CY= 4.4997787 Mean= 4.103584766
Epoch: 0300 cost= 0.038911112 CX= 5.9999976 CY= 4.945466 Mean= 3.775567770
Epoch: 0350 cost= 0.014412695 CX= 5.999998 CY= 5.2943544 Mean= 3.535865068
Epoch: 0400 cost= 0.004034557 CX= 5.999998 CY= 5.5200934 Mean= 3.390078306
Epoch: 0450 cost= 0.000921754 CX= 5.999998 CY= 5.6429324 Mean= 3.314131498
Epoch: 0500 cost= 0.000187423 CX= 5.999998 CY= 5.7023263 Mean= 3.278312683
Epoch: 0550 cost= 0.000035973 CX= 5.999998 CY= 5.7292333 Mean= 3.262284517
Epoch: 0600 cost= 0.000006724 CX= 5.999998 CY= 5.7410445 Mean= 3.255288363
Epoch: 0650 cost= 0.000001243 CX= 5.999998 CY= 5.746154 Mean= 3.252269506
Epoch: 0700 cost= 0.000000229 CX= 5.999998 CY= 5.7483506 Mean= 3.250972748
Epoch: 0750 cost= 0.000000042 CX= 5.999998 CY= 5.749294 Mean= 3.250416517
Epoch: 0800 cost= 0.000000008 CX= 5.999998 CY= 5.749697 Mean= 3.250178576
Epoch: 0850 cost= 0.000000001 CX= 5.999998 CY= 5.749871 Mean= 3.250076294
Epoch: 0900 cost= 0.000000000 CX= 5.999998 CY= 5.7499437 Mean= 3.250033140
Optimization Finished!
Training cost= 9.8869656e-11 CX= 6.0 CY= 5.75 R= 3.25
经过900多次的迭代,圆心位置是(6.0,5.75),半径是3.25。
# Parameters
learning_rate = 0.1
training_epochs = 3000
display_step = 50
- learning_rate 是梯度下降的速率,这个值越大,收敛的越快,但也有可能会错过最优解
- training_epochs是学习迭代的次数
- display_step是每多少次迭代显示当前的计算结果
# Training Data, 3 points that form a triangel
train_X = numpy.asarray([3.0,6.0,9.0])
train_Y = numpy.asarray([7.0,9.0,7.0])
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set vaibale for center
cx = tf.Variable(3, name="cx",dtype=tf.float32)
cy = tf.Variable(3, name="cy",dtype=tf.float32)
- train_X,train_Y是三个点的x,y坐标,这里我们选了(3,7)(6,9)(9,7)三个点
- X,Y是计算的输入,在计算过程中我们会使用训练数据输入X,Y
- cx,cy是我们想要找的圆心点,初始值设置为(3,3),一般的学习算法会使用随机的初始值,这里我选了三角形中的一个点,这样做一般会减少迭代的次数。
# Caculate the distance to the center and make them as equal as possible
distance = tf.pow(tf.add(tf.pow((X-cx),2),tf.pow((Y-cy),2)),0.5)
mean = tf.reduce_mean(distance)
cost = tf.reduce_sum(tf.pow((distance-mean),2)/3)
# Gradient descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
这几行代码是算法的核心。
- distance是利用两个点的距离公式算出三个点到圆心的距离
- mean是三个距离的平均值
- cost是三个距离的方差,我们的目标是让三个点到圆心的距离一样,也就是方差最小(cx/cy为圆心的时候,这个方差为零)
- optimizer是梯度下降的训练函数,目标是使得cost(方差)最小
下面就是训练的过程了:
# Start training
with tf.Session() as sess:
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
sess.run(optimizer, feed_dict={X: train_X, Y: train_Y})
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
if (c - 0) < 0.0000000001:
break
#Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
m = sess.run(mean, feed_dict={X: train_X, Y:train_Y})
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"CX=", sess.run(cx), "CY=", sess.run(cy), "Mean=", "{:.9f}".format(m)
print "Optimization Finished!"
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print "Training cost=", training_cost, "CX=", round(sess.run(cx),2), "CY=", round(sess.run(cy),2), "R=", round(m,2), '\n'
- 初始化tf的session
- 开始迭代
- 计算cost值,当cost小于一定的值的时候,推出迭代,说明我们已经找到了圆心
- 最后打印出训练的结果
原题目是空间上的点,我的例子是平面上的点,其实没有本质差别。可以加一个Z轴的数据。这个题,三维其实是多余的,完全可以把空间上的三个点投影到平面上来解决。
我用JS实现过另一个算法,但是不是总收敛。大家可以参考着看一看:
其中,绿色三个点条件点,红色的圆是最终的学习结果,黄色的中心点学习的轨迹。
利用这个例子,我想说的是:
- Tensorflow不仅仅是一个深度学习的工具,它提供了强大的数据计算能力,可以用于解决很多的数学问题
- 机器学习的本质是通过一组数据来找到答案,这也是数学的作用,所以很多的数学问题都可以用机器学习的思路来解决。