import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from linear_regression import LinearRegression
data = pd.read_csv('./data/non-linear-regression-x-y.csv')
x = data['x'].values.reshape((data.shape[0],1)) # 拿到x
y = data['y'].values.reshape((data.shape[0],1)) # 拿到y
data.head(10)
plt.plot(x , y)
plt.show()
num_iterations :模型迭代次数;
learning_rate :学习率;
polynomial_degree : 特征变换
sinusoid_degree : sin(x) 非线性变换
normalize_data :标准化数据
num_iterations = 5000 # 设置模型迭代次数5000
learning_rate = 0.02 # 学习率
polynomial_degree = 15 #
sinusoid_degree = 15
normalize_data = True
"""Add polynomial features to the features set"""
import numpy as np
from .normalize import normalize
def generate_polynomials(dataset, polynomial_degree, normalize_data=False):
"""变换方法:
x1, x2, x1^2, x2^2, x1*x2, x1*x2^2, etc.
"""
features_split = np.array_split(dataset, 2, axis=1)
dataset_1 = features_split[0]
dataset_2 = features_split[1]
(num_examples_1, num_features_1) = dataset_1.shape
(num_examples_2, num_features_2) = dataset_2.shape
if num_examples_1 != num_examples_2:
raise ValueError('Can not generate polynomials for two sets with different number of rows')
if num_features_1 == 0 and num_features_2 == 0:
raise ValueError('Can not generate polynomials for two sets with no columns')
if num_features_1 == 0:
dataset_1 = dataset_2
elif num_features_2 == 0:
dataset_2 = dataset_1
num_features = num_features_1 if num_features_1 < num_examples_2 else num_features_2
dataset_1 = dataset_1[:, :num_features]
dataset_2 = dataset_2[:, :num_features]
polynomials = np.empty((num_examples_1, 0))
for i in range(1, polynomial_degree + 1):
for j in range(i + 1):
polynomial_feature = (dataset_1 ** (i - j)) * (dataset_2 ** j)
polynomials = np.concatenate((polynomials, polynomial_feature), axis=1)
if normalize_data:
polynomials = normalize(polynomials)[0]
return polynomials
import numpy as np
def generate_sinusoids(dataset, sinusoid_degree):
"""
sin(x).
"""
num_examples = dataset.shape[0]
sinusoids = np.empty((num_examples, 0))
for degree in range(1, sinusoid_degree + 1):
sinusoid_features = np.sin(degree * dataset)
sinusoids = np.concatenate((sinusoids, sinusoid_features), axis=1)
return sinusoids
linear_regression = LinearRegression(x , y, polynomial_degree ,sinusoid_degree , normalize_data)
(theta , cost_history) = linear_regression.train(
learning_rate , num_iterations
)
print('开始损失 : {:.2f}'.format(cost_history[0])) # 第一个损失值
print('结束损失 : {:.2f}'.format(cost_history[-1])) # 最后一个损失值
绘制损失变化曲线图
theta_table = pd.DataFrame({'Model Parameters' : theta.flatten()})
plt.plot(range(num_iterations), cost_history)
plt.xlabel('Lterations')
plt.ylabel('Cost')
plt.title('Gradient Descent Progress')
plt.show()
绘制非线性回归预测模型折线图
predictions_num = 1000
x_predictions = np.linspace(x.min() , x.max() , predictions_num).reshape(predictions_num , 1)
y_predictions = linear_regression.predict(x_predictions)
plt.scatter(x, y, label = 'Training Dataset')
plt.plot(x_predictions , y_predictions , 'r' ,label = 'Prediction')
plt.show()