最近对用到强化学习的论文进行了简单整理,方便之后查看。我主要是分为两类统计:基于语义解析的方法和基于信息检索的方法。具体的如下:
基于语义解析的KBQA方法
1. 原论文:GraphParser (2014 ACL)
Large-scale Semantic Parsing without Question-Answer Pairs
提到的有关强化学习的论文:
Reinforcement Learning for Mapping Instructions to Actions (发表年份:2009 发表会议:AFNLP)
本文提出了一个强化学习的方法,将natural language instructions 映射到 executable actions 序列。我们假设可以使用奖励函数来定义执行操作的质量。在训练过程中,learner重复地为一组文件构建操作序列,执行这些操作,并观察得到的奖励。我们使用一个policy gradient (策略梯度算法)来估计一个对数线性模型的参数来进行操作选择。
本文在两个领域(Windows故障排除指南和游戏教程)应用此方法解释说明 。当需要少量或者没有标注的训练样例时,此方法能比得上监督学习。
2. 原论文:TextRay(2019 CIKM)
Large-scale Semantic Parsing without Question-Answer Pairs
提到的有关强化学习的论文:
Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning (2017 arXiv)
DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning (2017 EMNLP)
3. 原论文:SSRP(2019 IJCAI)
Neural Program Induction for KBQA Without Gold Programs or Query Annotations
提到的有关强化学习的论文:
Leveraging grammar and reinforcement learning for neural program synthesis (2018 CoRR)
Robust distant supervision relation extraction via deep reinforcement learning(2018 ACL)
Simple statistical gradient-following algorithms for connectionist reinforcement learning(1992)
4. 原论文:FullModel (2019 IJCAI)
Knowledge Base Question Answering with Topic Units
提到的有关强化学习的论文:
Simple statistical gradient-following algorithms for connectionist reinforcement learning(1992)
5. 原论文: UHop(2019 NAACL)
UHop: An Unrestricted-Hop Relation Extraction Framework for Knowledge-Based Question Answering
提到的有关强化学习的论文:
Simple statistical gradient-following algorithms for connectionist reinforcement learning(1992)
DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning (2017 EMNLP)
Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning (2017 arXiv)
6. 原论文: QGG(2020 ACL)
Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Bases
提到的有关强化学习的论文:
Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning (2017 arXiv)
7. 原论文:DAC(2020 CIKM)
Hierarchical Query Graph Generation for Complex Question Answering over Knowledge Graph
提到的有关强化学习的论文:
Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation (2016)
Human-level control through deep reinforcement learning(2015 Nature)
Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning (2017 EMNLP)
Intrinsically motivated reinforcement learning (2005)
Reinforcement learning: An introduction (2018)
Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning(1999 Artificial intelligence)
Simple statistical gradient-following algorithms for connectionist reinforcement learning(1992)
8. 原论文:BART-large (2021 EMNLP)
Unseen Entity Handling in Complex Question Answering over KnowledgeBase via Language Generation
提到的有关强化学习的论文:
Neural symbolic machines: Learning semantic parsers on freebase with weak supervision (2017 ACL)
Learning to decompose compound questions with reinforcement learning (2019)
9. 原论文:CWQ(2018 NAACL)
The Web as a Knowledge-base for Answering Complex Questions
提到的有关强化学习的论文:
Ask the right questions: Active question reformulation with reinforcement learning
(2017 arXiv)
From language to programs: Bridging reinforcement learning and maximum marginal likelihood (2017 ACL)
Seq2sql: Generating structured queries from natural language using reinforcement learning
(2017 arXiv)
10. 原论文:MULTIQUE(2020)
Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases
提到的有关强化学习的论文:
DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning (2017 EMNLP)
Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning (2017 arXiv)
11. 原论文:AMR解析(2020)
Question Answering over Knowledge Bases by Leveraging Semantic Parsing and Neuro-Symbolic Reasoning
提到的有关强化学习的论文:
Rewarding Smatch: Transition-Based AMR Parsing with Reinforcement Learning.(2019 arXiv)
12. 原论文:Computer-Programmer(2017 ACL)
Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision
提到的有关强化学习的论文:
Deep reinforcement learning for dialogue generation(2016 arXiv)
Reinforcement Learning: An Introduction.(1998 MA)
Reinforcement learning neural turing machines(2015 arXiv)
Simple statistical gradient-following algorithms for connectionist reinforcement learning(1992)
13. 原论文:CBR(2021)
Case-Based Reasoning for Natural Language Queries over Knowledge Bases
提到的有关强化学习的论文:
Seq2sql: Generating structured queries from natural language using reinforcement learning (2017 arXiv)
基于信息检索的KBQA方法
14. 原论文:ReifKB(2020 arXiv)
SCALABLE NEURAL METHODS FOR REASONING WITH A SYMBOLIC KNOWLEDGE BASE
提到的有关强化学习的论文:
Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning (2017 arXiv)
DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning (2017 EMNLP)
Seq2sql: Generating structured queries from natural language using reinforcement learning (2017 arXiv)
15. 原论文:Rigel-E2E(2021 EMNLP)
Less is more: Data-efficient complex question answering over knowledge bases.(2020)
Learning to generalize from sparse and underspecified rewards (2019 PMLR)
16. 原论文:VRN(2017 arXiv)
Variational Reasoning for Question Answering with Knowledge Graph
提到的有关强化学习的论文:
Simple statistical gradient-following algorithms for connectionist reinforcement learning(1992)
17. 原论文: IRN(2018 COLING)
An Interpretable Reasoning Network for Multi-Relation Question Answering
提到的有关强化学习的论文:
Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text
提到的有关强化学习的论文:
Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning (2017 arXiv)
Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning (2017 arXiv)
R3: Reinforced reader-ranker for open-domain question answering (2018 AAAI)
具体问题:当遇到有多个关系的问题时,现存的基于嵌入的方法将考虑以主题实体为中心的整个子图,但这会导致高的时间复杂度。与此同时,由于数据标注的高成本,对于一个复杂的问题,要一步一步地给出答案是不现实的,只有最后的答案才会被标记 用作弱监督。
SRN将multi-relation 问答转化为序列决策问题。模型在知识图谱上搜索有效路径获取答案,并利用束搜索减少候选路径的数量。与此同时,基于注意力机制和神经网络,策略梯度可以在三元组选择上增强给定问题不同部分的独特影响。此外,为了缓解由弱监督带来的延迟和稀疏奖励问题,提出来一个potential-based reward shping strategy,从而加快了训练算法的收敛速度,提高了模型的性能。
DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning (2017 EMNLP)
多跳问答算法只能收到最终答案的反馈,缺乏中间步骤的监督信号。本文提出了teacher-student 方法 。Student network目的是找到query的正确答案,teacher network目的是学习中间的监督信号(主要体现在实体消歧)以提升student network的推理能力。重点创新是在teacher network的双向推理(从主题实体到答案实体 和 从答案实体到主题实体)。
Student network 是基于Neural State Machine(NSM)实现的,NSM最先在2019年的视觉问答中使用过。Teacher network是通过加入双向推理机制修改了NSM的结构。