POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems 学习笔记

1. 引言

Grassi等人2019年论文《POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems》。

前序博客有:

  • snark/stark-friendly hash函数
  • HADES Strategy

相关代码实现有:

  • https://github.com/dusk-network/Poseidon252【Dusk团队】
  • https://github.com/shamatar/poseidon_hash
  • https://github.com/daira/pasta-hadeshash
  • https://github.com/zcash/orchard/blob/main/src/circuit/gadget/poseidon.rs【ZCash团队】
  • https://github.com/lovesh/bulletproofs-r1cs-gadgets/blob/master/src/gadget_poseidon.rs【Bulletproofs】
  • https://github.com/shamatar/rescue_hash(Rescue hash)
  • https://github.com/o1-labs/proof-systems/blob/master/oracle/src/poseidon.rs【Mina团队】

SNARK、STARK、Bulletproofs(PLONK/RedShift)中,若用于proof of knowledge of a preimage under a certain cryptographic hash function时,都需要消耗大量的计算。

所谓proof of knowledge of a preimage under a certain cryptographic hash function,针对的场景为:

  • public info: h , H h,H h,H
  • private info: x x x
  • 待证明relation: h = H ( x ) h=H(x) h=H(x)

其中 H ( ∗ ) H(*) H() 为hash函数。

若hash函数为POSEIDON,其具有8x fewer constraints per message bit than Pedersen Hash。

POSEIDON hash可:

  • 紧凑地以circuit表示
  • tailored for various proof systems using specially crafted polynomials,从而进一步提升性能。

借助POSEIDON hash,采用Bulletproofs方案来实现1-out-of-10亿 membership proof with Merkle trees,所需的时间少于1秒。

1.1 不同circuit对比

此处主要考虑2种circuit:

  • R1CS(rank-1 quadratic constraints):用于ZK-SNARKs和Bulletproofs中。
  • algebraic execution trace (AET) :用于ZK-STARKs和PLONK中。

1)R1CS(rank-1 quadratic constraints):
Bulletproofs 和 ZK-SNARKs 采用R1CS format(rank-1 quadratic constraints)来描述circuit,表示为一组二次多项式:
L 1 ( X ) ⋅ L 2 ( X ) = L 3 ( X ) L_1(X)\cdot L_2(X)=L_3(X) L1(X)L2(X)=L3(X)
其中 X X X为the tuple of internal and input variables, L i L_i Li为affine forms, ⋅ \cdot 为the field multiplication。
R1CS circuit中的加法门和乘法门都是定义在prime field G F ( p ) GF(p) GF(p)内。 G F ( p ) GF(p) GF(p)为the scalar field of an elliptic curve,对应ZK-SNARKs来说,该椭圆曲线通常需pairing-friendly;对于Bulletproofs来说,该椭圆曲线通常仅需为secure curve即可。
R1CS的proof generation complexity与constraints的数量 T T T成正比,而constraints的数量 T T T通常与乘法门的数量相关。

2)algebraic execution trace (AET):
algebraic execution trace (AET) 将computation 表示为 a set of internal program states related to each other by polynomial equations of degree d d d。该state包含了 w w w field elements,并经历 T T T transformations。
AET的proof generation与 w ⋅ d ⋅ T w\cdot d\cdot T wdT 成比例。The number and sparsity of polynomial constraints do not play a major role。

1.2 实现的POSEIDON家族

POSEIDON采用 HADES 设计策略,基于具有 t t t cells的substitution-permutation networks,使用了名为partial的rounds,采用了non-linear functions only for part of the state。
POSEIDON中在partial rounds中仅使用了1个S-box,但是在所有其它rounds中使用了full non-linear layers(即 t t t个S-box),从而可降低R1CS或AET的开销。

POSEIDON支持80、128、256-bit security:
POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems 学习笔记_第1张图片

1.3 POSEIDON性能

  • Groth16:
    POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems 学习笔记_第2张图片

  • R1CS 用于Prove a leaf knowledge in the Merkle tree of 2 30 2^{30} 230 elements:
    POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems 学习笔记_第3张图片

  • Bulletproofs 用于Prove a leaf knowledge in the Merkle tree of 2 30 2^{30} 230 elements:
    POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems 学习笔记_第4张图片

  • PLONK 用于证明1-out-of- 2 n 2^n 2n Merkle tree of arity of 4 4 4
    POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems 学习笔记_第5张图片

2. Sponge Construction for POSEIDON

Sponge构建与Hades permutation之上,可用于实现:

  • encryptiong
  • authentication
  • hashing

Sponge额外定义了2个参数:

  • r r r:为rate。在tree hashing上下文中是指arity。rate定义了吞吐量。
  • c c c:capacity。或inner part。capacity则决定了security level。

当将内部的Hades permutation size固定为 N N N bits,则需要在吞吐量和安全性之间做平衡。

以下图为例,用于计算the hash output为 h 1 ∣ ∣ h 2 h_1||h_2 h1h2 of the 4 4 4-block message m 1 ∣ ∣ m 2 ∣ ∣ m 3 ∣ ∣ m 4 m_1||m_2||m_3||m_4 m1m2m3m4,其中 m i m_i mi h i h_i hi r r r-bit values。初始state I I I为全0,即 I = 0 r ∣ ∣ 0 c I=0^r||0^c I=0r0c for an r r r-bit rate and a c c c-bit capacity。
POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems 学习笔记_第6张图片

3. POSEIDON hash代码解析

详细参看:

  • https://github.com/dusk-network/Poseidon252/blob/master/src/sponge/sponge.rs

POSEIDON: A New Hash Function for Zero-Knowledge Proof Systems 学习笔记_第7张图片
其中messages.chunks(WIDTH - 1) 对应为 m 1 , m 2 , m 3 , m 4 m_1,m_2,m_3,m_4 m1,m2,m3,m4
state[0]对应为capacity。

/// The `hash` function takes an arbitrary number of Scalars and returns the
/// hash, using the `Hades` ScalarStragegy.
///
/// As the paper definition, the capacity `c` is set to [`WIDTH`], and `r` is
/// set to `c - 1`.
///
/// Considering `r` is set to `c - 1`, the first bit will be the capacity and
/// will have no message addition, and the remainder bits of the permutation
/// will have the corresponding element of the chunk added.
///
/// The last permutation will append `1` to the message as a padding separator
/// value. The padding values will be zeroes. To avoid collision, the padding
/// will imply one additional permutation in case `|m|` is a multiple of `r`.
pub fn sponge_hash(messages: &[BlsScalar]) -> BlsScalar {
    let mut h = ScalarStrategy::new();
    let mut state = [BlsScalar::zero(); WIDTH];

    // If exists an `m` such as `m · (WIDTH - 1) == l`, then the last iteration
    // index should be `m - 1`.
    //
    // In other words, if `l` is a multiple of `WIDTH - 1`, then the last
    // iteration of the chunk should have an extra appended padding `1`.
    let l = messages.len();
    let m = l / (WIDTH - 1);
    let n = m * (WIDTH - 1);
    let last_iteration = if l == n {
        m.saturating_sub(1)
    } else {
        l / (WIDTH - 1)
    };

    messages
        .chunks(WIDTH - 1)
        .enumerate()
        .for_each(|(i, chunk)| {
            state[1..].iter_mut().zip(chunk.iter()).for_each(|(s, c)| {
                *s += c;
            });

            // Last chunk should have an added `1` followed by zeroes, if there
            // is room for such
            if i == last_iteration && chunk.len() < WIDTH - 1 {
                state[chunk.len() + 1] += BlsScalar::one();

            // If its the last iteration and there is no available room to
            // append `1`, then there must be an extra permutation
            // for the padding
            } else if i == last_iteration {
                h.perm(&mut state);

                state[1] += BlsScalar::one();
            }

            h.perm(&mut state);
        });

    state[1]
}

参考资料

[1] Encoding and Hashing of Long Objects with Poseidon
[2] Dmitry Khovratovich 的hackmd系列中有多个关于Poseidon的笔记
[3] Plonk and Poseidon
[4] Poseidon: ZK-friendly Hashing

你可能感兴趣的:(零知识证明,基础理论,零知识证明)