原理参考链接
import numpy as np
def hmm_vtb(A,B,pi,O):
δ=np.zeros((len(O),len(A)))
Ψ=np.zeros((len(O),len(A)))
#1、初始化t=1时刻的两个局部变量
δ[0]=pi*B.T[O[0]]
#2、动态规划,递归求每一步的两个局部变量
for i in range(1,len(δ)):
δ[i]=np.max(δ[i-1]*A.T,1)*B.T[O[i]]
Ψ[i]=np.argmax(δ[i-1]*A.T,1)
#3、求最后一个概率最大对应的隐含标签
label=[np.argmax(δ[-1])]
#4、回溯求整个序列的隐含标签
for index,tag in enumerate(Ψ[::-1]):
if index<len(Ψ)-1:
label.append(int(tag[label[-1]]))
return label[::-1]
A=np.array([[0.5,0.2,0.3,0.2,0.4],[0.3,0.5,0.2,0.2,0.4],[0.2,0.3,0.5,0.2,0.4],[0.5,0.2,0.3,0.2,0.4],[0.5,0.2,0.3,0.2,0.4]])
B=np.array([[0.5,0.5],[0.4,0.6],[0.7,0.3],[0.7,0.3],[0.7,0.3]])
pi=[0.2,0.4,0.4,0.2,0.8]
O=[1,1,1,0,1]
a=hmm_vtb(A,B,pi,O)
print(a)
#[1, 1, 1, 4, 0]
分词(训练、预测)
import numpy as np
import re
class hmm(object):
def __init__(self,path):
self.path=path
self.clean_data()
def clean_data(self):
with open(self.path,encoding="utf-8") as f:
sentences=f.read()
self.data=[[word.split(" ") for word in sentence.split("\n")] for sentence in sentences.split("\n\n")]
self.Q=sorted(list(set([word[1] for sentence in self.data for word in sentence])))
self.V = sorted(list(set([word[0] for sentence in self.data for word in sentence])))
def train(self):
#初始状态pi
first_label=[sentence[0][1] for sentence in self.data]
self.pi=np.array([round(first_label.count(label)/len(first_label),4) for label in self.Q])
#转移状态A
label=[[word_label[1] for word_label in sentence] for sentence in self.data]
two_label = ["".join(tag[i:i + 2]) for tag in label for i in range(len(tag) - 1)]
# two_label=[[tag[i:i+2] for i in range(len(tag)-1)] for tag in label]
# two_label=["".join(word) for sentence in two_label for word in sentence]
self.A=np.array([[round(two_label.count(q1+q2)/sum(1 for b in two_label if b[0]==q1),4) for q2 in self.Q] for q1 in self.Q])
#发射矩阵B
word_label=["".join(word) for sentence in self.data for word in sentence]
# word_label = [["".join(word) for word in sentence] for sentence in self.data ]
# word_label =[word for sentence in word_label for word in sentence]
label=[label for sentence in label for label in sentence]
self.B=np.array([[round(word_label.count(word+q)/label.count(q),4) for word in self.V] for q in self.Q])
def predict(self,sent):
O=np.array([self.V.index(word) for word in sent ])
δ = np.zeros((len(O), len(self.A)))
Ψ = np.zeros((len(O), len(self.A)))
# 1、初始化t=1时刻的两个局部变量
δ[0] = self.pi * self.B.T[O[0]]
# 2、动态规划,递归求每一步的两个局部变量
for i in range(1, len(δ)):
δ[i] = np.max(δ[i - 1] * self.A.T, 1) * self.B.T[O[i]]
Ψ[i] = np.argmax(δ[i - 1] * self.A.T, 1)
# 3、求最后一个概率最大对应的隐含标签
label = [(δ[-1]).argmax()]
# 4、回溯求整个序列的隐含标签
for index, tag in enumerate(Ψ[::-1]):
if index < len(Ψ) - 1:
label.append(int(tag[int(label[-1])]))
return [self.Q[i] for i in label[::-1]]
path="./nlp.txt"
sentence="你想吃麻辣烫吗"
h=hmm(path)
h.train()
result=h.predict(sentence)
result=[sentence[i.start():i.end()] for i in re.finditer("bi+|o|b|i","".join(result))]
print(result)
# ['你', '想吃', '麻辣烫', '吗']