pytorch(六)—— 感知机

pytorch 感知机

  • Perception 感知机
  • torch实现perception
  • Ref:

Perception 感知机

一个简单的网络图为下图所示:

pytorch(六)—— 感知机_第1张图片

4个输入单元,3个输出单元

如果用 X \pmb X XXX表示输入, O \pmb O OOO表示输出, H \pmb H HHH表示隐藏层。
H = X ⋅ w 1 + b 1 O = H ⋅ w 2 + b 2 \pmb H = \pmb X · \pmb w _1+ \pmb b_1 \\\pmb O = \pmb H · \pmb w _2+ \pmb b_2 HHH=XXXwww1+bbb1OOO=HHHwww2+bbb2
在大多数情况下,线性模型不能很好的拟合模型,这时候将Hidden layer的拟合关系变成曲线,就可以很好的适合不同的场景,这个曲线Function叫做Activation Function。

Activation Function 具体可以参考上篇文章。

如果加入sigmoid function激活,输出层就变成了
O = σ ( H ⋅ w 2 + b 2 ) \pmb O = \sigma(\pmb H · \pmb w _2+ \pmb b_2 ) OOO=σ(HHHwww2+bbb2)

torch实现perception

数据集采用fashion_mnist,稍微定义一个比较复杂的网络,输入层为784, 输出为10,hidden layer一层有256个,采用ReLU函数激活,这样的话网络的式子为
H = X ⋅ w 1 + b 1 O = R e L U ( H ⋅ w 2 + b 2 ) \pmb H = \pmb X · \pmb w _1+ \pmb b_1 \\\pmb O = R eLU(\pmb H · \pmb w _2+ \pmb b_2 ) HHH=XXXwww1+bbb1OOO=ReLU(HHHwww2+bbb2)
w 1 w_1 w1的shape为 ( 784 , 256 ) (784,256) (784,256), b 1 b_1 b1的shape为 ( 256 , ) (256,) (256,);
w 2 w_2 w2的shape为 ( 256 , 10 ) (256, 10) (256,10), b 2 b_2 b2的shape为 ( 10 , ) (10,) (10,)

import torch
import matplotlib.pyplot as plt
from torch import nn
from d2l import torch as d2l
# 载入数据集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# weight
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(
    torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01  
  )

b1 = nn.Parameter(
    torch.zeros(num_hiddens, requires_grad=True)
  )

W2 = nn.Parameter(
    torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01  
  )

b2 = nn.Parameter(
    torch.zeros(num_outputs, requires_grad=True) * 0.01  
  )
params = [W1, b1, W2, b2]

编写网络结构

net = nn.Sequential(
    nn.Flatten(), 
    nn.Linear(784, 256), # 隐藏层线性模型
    nn.ReLU(), # 激活隐藏层
    nn.Linear(256, 10)
    )

带有一层hidden layer的perception就构建好了,接下来就可以带入利用torch自动求导进行训练。


def acc(X,y,net):
  p_predict = net(X)
  y_predict = torch.argmax(p_predict,axis=1)
  output = y_predict - y
  right_pre = len(output[output==0])
  right_accu = right_pre/len(output)
  return right_accu

loss = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)


epochs = 20
train_accu_history = []
test_accu_history = []
train_loss = []
for epoch in range(epochs):

  for X,y in train_iter:

    l = loss(net(X), y)
    optimizer.zero_grad()
    l.backward()
    optimizer.step()

  l = loss(net(X), y)
  train_loss.append(l.detach())

  train_batch = 0
  train_accu = 0
  
  test_batch = 0
  test_accu = 0
  
  for X_train,y_train in train_iter:
    train_accu += acc(X_train, y_train, net)
    train_batch += 1
    train_avg_acc = train_accu/train_batch
  train_accu_history.append(train_avg_acc)

  for X_test,y_test in test_iter:
    test_accu += acc(X_test, y_test, net)
    test_batch += 1
    avg_acc = test_accu/test_batch
  test_accu_history.append(avg_acc)


  print(f'epoch {epoch + 1}, loss {l:f}, train_accu {train_avg_acc:f}, test_accu {avg_acc:f}')

结果可以看一下:
pytorch(六)—— 感知机_第2张图片

Ref:

[1] 阿斯顿·张 李沐等,《动手学深度学习》,北京:人民邮电出版社,2019

[2] 李航,《统计学习方法(第2版)》, 北京:清华大学出版社,2019

你可能感兴趣的:(pytorch,深度学习,机器学习)