本程序最终的功能实现: 能够检测到嘴巴,眼睛是否眨眼。
实现难度: 不难
需要的环境: python3.8,还有dlib的库(具体下载请另外在csdn上搜索)
程序状态: 能跑起来
满意度: 不太满意,还没有加语言提示:不能闭眼,警报等,还要生成GUI界面就更好了。
后期博主会进一步的改善。
项目建议: 先拿过去跑通,然后最好是自己去敲几遍。
# -*- coding: utf-8 -*-
# import the necessary packages
from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np # 数据处理的库 numpy
import argparse
import imutils
import time
import dlib
import cv2
import math
import time
from threading import Thread
# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cpp
object_pts = np.float32([[6.825897, 6.760612, 4.402142], # 33左眉左上角
[1.330353, 7.122144, 6.903745], # 29左眉右角
[-1.330353, 7.122144, 6.903745], # 34右眉左角
[-6.825897, 6.760612, 4.402142], # 38右眉右上角
[5.311432, 5.485328, 3.987654], # 13左眼左上角
[1.789930, 5.393625, 4.413414], # 17左眼右上角
[-1.789930, 5.393625, 4.413414], # 25右眼左上角
[-5.311432, 5.485328, 3.987654], # 21右眼右上角
[2.005628, 1.409845, 6.165652], # 55鼻子左上角
[-2.005628, 1.409845, 6.165652], # 49鼻子右上角
[2.774015, -2.080775, 5.048531], # 43嘴左上角
[-2.774015, -2.080775, 5.048531], # 39嘴右上角
[0.000000, -3.116408, 6.097667], # 45嘴中央下角
[0.000000, -7.415691, 4.070434]]) # 6下巴角
# 相机坐标系(XYZ):添加相机内参
K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,
0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,
0.0, 0.0, 1.0] # 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]
# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]
D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]
# 像素坐标系(xy):填写凸轮的本征和畸变系数
cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)
dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)
# 重新投影3D点的世界坐标轴以验证结果姿势
reprojectsrc = np.float32([[10.0, 10.0, 10.0],
[10.0, 10.0, -10.0],
[10.0, -10.0, -10.0],
[10.0, -10.0, 10.0],
[-10.0, 10.0, 10.0],
[-10.0, 10.0, -10.0],
[-10.0, -10.0, -10.0],
[-10.0, -10.0, 10.0]])
# 绘制正方体12轴
line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],
[4, 5], [5, 6], [6, 7], [7, 4],
[0, 4], [1, 5], [2, 6], [3, 7]]
def get_head_pose(shape): # 头部姿态估计
# (像素坐标集合)填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/
# 17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/
# 45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角
image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],
shape[39], shape[42], shape[45], shape[31], shape[35],
shape[48], shape[54], shape[57], shape[8]])
# solvePnP计算姿势——求解旋转和平移矩阵:
# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。
_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)
# projectPoints重新投影误差:原2d点和重投影2d点的距离(输入3d点、相机内参、相机畸变、r、t,输出重投影2d点)
reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix, dist_coeffs)
reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2))) # 以8行2列显示
# 计算欧拉角calc euler angle
# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrix
rotation_mat, _ = cv2.Rodrigues(rotation_vec) # 罗德里格斯公式(将旋转矩阵转换为旋转向量)
pose_mat = cv2.hconcat((rotation_mat, translation_vec)) # 水平拼接,vconcat垂直拼接
# decomposeProjectionMatrix将投影矩阵分解为旋转矩阵和相机矩阵
_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)
pitch, yaw, roll = [math.radians(_) for _ in euler_angle]
pitch = math.degrees(math.asin(math.sin(pitch)))
roll = -math.degrees(math.asin(math.sin(roll)))
yaw = math.degrees(math.asin(math.sin(yaw)))
print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))
return reprojectdst, euler_angle # 投影误差,欧拉角
def eye_aspect_ratio(eye):
# 垂直眼标志(X,Y)坐标
A = dist.euclidean(eye[1], eye[5]) # 计算两个集合之间的欧式距离
B = dist.euclidean(eye[2], eye[4])
# 计算水平之间的欧几里得距离
# 水平眼标志(X,Y)坐标
C = dist.euclidean(eye[0], eye[3])
# 眼睛长宽比的计算
ear = (A + B) / (2.0 * C)
# 返回眼睛的长宽比
return ear
def mouth_aspect_ratio(mouth): # 嘴部
A = np.linalg.norm(mouth[2] - mouth[9]) # 51, 59
B = np.linalg.norm(mouth[4] - mouth[7]) # 53, 57
C = np.linalg.norm(mouth[0] - mouth[6]) # 49, 55
mar = (A + B) / (2.0 * C)
return mar
# 定义常数
# 眼睛长宽比
# 闪烁阈值
EYE_AR_THRESH = 0.2
EYE_AR_CONSEC_FRAMES = 3
# 打哈欠长宽比
# 闪烁阈值
MAR_THRESH = 0.5
MOUTH_AR_CONSEC_FRAMES = 3
# 瞌睡点头
HAR_THRESH = 0.3
NOD_AR_CONSEC_FRAMES = 3
# 初始化帧计数器和眨眼总数
COUNTER = 0
TOTAL = 0
# 初始化帧计数器和打哈欠总数
mCOUNTER = 0
mTOTAL = 0
# 初始化帧计数器和点头总数
hCOUNTER = 0
hTOTAL = 0
# 初始化DLIB的人脸检测器(HOG),然后创建面部标志物预测
print("[INFO] loading facial landmark predictor...")
# 第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器
detector = dlib.get_frontal_face_detector()
# 第二步:使用dlib.shape_predictor获得脸部特征位置检测器
predictor = dlib.shape_predictor(
r"E:\AI\CV\shape_predictor_68_face_landmarks.dat")
# 第三步:分别获取左右眼面部标志的索引
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
# 第四步:打开cv2 本地摄像头
cap = cv2.VideoCapture(0)
# 从视频流循环帧
while True:
# 第五步:进行循环,读取图片,并对图片做维度扩大,并进灰度化
ret, frame = cap.read()
frame = imutils.resize(frame, width=720)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 第六步:使用detector(gray, 0) 进行脸部位置检测
rects = detector(gray, 0)
# 第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息
for rect in rects:
shape = predictor(gray, rect)
# 第八步:将脸部特征信息转换为数组array的格式
shape = face_utils.shape_to_np(shape)
# 第九步:提取左眼和右眼坐标
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
# 嘴巴坐标
mouth = shape[mStart:mEnd]
# 第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EAR
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
ear = (leftEAR + rightEAR) / 2.0
# 打哈欠
mar = mouth_aspect_ratio(mouth)
# 第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
mouthHull = cv2.convexHull(mouth)
cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1)
# 第十二步:进行画图操作,用矩形框标注人脸
left = rect.left()
top = rect.top()
right = rect.right()
bottom = rect.bottom()
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 1)
'''
分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动
'''
# 第十三步:循环,满足条件的,眨眼次数+1
if ear < EYE_AR_THRESH: # 眼睛长宽比:0.2
COUNTER += 1
else:
# 如果连续3次都小于阈值,则表示进行了一次眨眼活动
if COUNTER >= EYE_AR_CONSEC_FRAMES: # 阈值:3
TOTAL += 1
# 重置眼帧计数器
COUNTER = 0
# 第十四步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示
cv2.putText(frame, "Faces: {}".format(len(rects)), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "COUNTER: {}".format(COUNTER), (150, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Blinks: {}".format(TOTAL), (450, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
'''
计算张嘴评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示打了一次哈欠,同一次哈欠大约在3帧
'''
# 同理,判断是否打哈欠
if mar > MAR_THRESH: # 张嘴阈值0.5
mCOUNTER += 1
cv2.putText(frame, "Yawning!", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
# 如果连续3次都小于阈值,则表示打了一次哈欠
if mCOUNTER >= MOUTH_AR_CONSEC_FRAMES: # 阈值:3
mTOTAL += 1
# 重置嘴帧计数器
mCOUNTER = 0
cv2.putText(frame, "COUNTER: {}".format(mCOUNTER), (150, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "MAR: {:.2f}".format(mar), (300, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Yawning: {}".format(mTOTAL), (450, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
"""
瞌睡点头
"""
# 第十五步:获取头部姿态
reprojectdst, euler_angle = get_head_pose(shape)
har = euler_angle[0, 0] # 取pitch旋转角度
if har > HAR_THRESH: # 点头阈值0.3
hCOUNTER += 1
else:
# 如果连续3次都小于阈值,则表示瞌睡点头一次
if hCOUNTER >= NOD_AR_CONSEC_FRAMES: # 阈值:3
hTOTAL += 1
# 重置点头帧计数器
hCOUNTER = 0
# 绘制正方体12轴
for start, end in line_pairs:
cv2.line(frame, (int(reprojectdst[start][0]),int(reprojectdst[start][1])),(int(reprojectdst[end][0]),int(reprojectdst[end][1])),(0,0,255))
# 显示角度结果
cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
(0, 255, 0), thickness=2) # GREEN
cv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (150, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
(255, 0, 0), thickness=2) # BLUE
cv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (300, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
(0, 0, 255), thickness=2) # RED
cv2.putText(frame, "Nod: {}".format(hTOTAL), (450, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
# 第十六步:进行画图操作,68个特征点标识
for (x, y) in shape:
cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)
print('嘴巴实时长宽比:{:.2f} '.format(mar) + "\t是否张嘴:" + str([False, True][mar > MAR_THRESH]))
print('眼睛实时长宽比:{:.2f} '.format(ear) + "\t是否眨眼:" + str([False, True][COUNTER >= 1]))
# 确定疲劳提示:眨眼50次,打哈欠15次,瞌睡点头15次
if TOTAL >= 50 or mTOTAL >= 15 or hTOTAL >= 15:
cv2.putText(frame, "SLEEP!!!", (100, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 3)
# 按q退出
cv2.putText(frame, "Press 'q': Quit", (20, 500), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)
# 窗口显示 show with opencv
cv2.imshow("Frame", frame)
# if the `q` key was pressed, break from the loop
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头 release camera
cap.release()
# do a bit of cleanup
cv2.destroyAllWindows()