本次任务是进行气温预测,数据集链接https://www.kaggle.com/datasets/ns0720/tempscsv,数据集下载有困难的评论区留言,作为全面学习PyTorch实战的第一章,我们会使用比较原始的方法写整个训练过程,除了反向传播由PyTorch代码调用自行计算。
数据集是csv文件,他饱含9列,按顺序分别是year,month,day,week,temp_1,temp_2,average,actual,friend。我们的训练数据集为除了actual的所有列,训练数据集的标签为actual。数据的预处理我们展示在代码中。
注意代码执行环境要在PredictionTemps目录下,否则会报temps.csv文件找不到。
from ast import increment_lineno
from audioop import bias
from calendar import month
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")
# %matplotlib inline
#数据读取
features = pd.read_csv('temps.csv')
#查看数据
print(features.head())
print("数据维度", features.shape)
#处理数据,转换时间类型
import datetime
#年,月,日
years = features['year']
months = features['month']
days = features['day']
# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
# 查看数据格式
print(dates[:5])
# week列为字符串不是数值,利用独热编码,将数据中非字符串转换为数值,并拼接到数据中
features = pd.get_dummies(features)
# 看独热编码的效果
print(features.head(5))
# 标签
labels = np.array(features['actual'])
# 去掉标签用作特征
features = features.drop('actual', axis=1)
# 保存列名用于展示
features_list = list(features.columns)
# 转换为合适的格式
features = np.array(features)
print(features.shape)
# 数据标准化
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
# 看一下数字标准化的效果
print(input_features[0])
接下来构建神经网络模型,首先使用原始的方法
# 将输入和预测转为tensor
x = torch.tensor(input_features, dtype=float)
y = torch.tensor(labels,dtype=float)
# 权重参数初始化
weights = torch.randn((14, 128), dtype= float, requires_grad= True)
biases = torch.randn(128, dtype=float, requires_grad= True)
weights2 = torch.randn((128, 1), dtype=float, requires_grad= True)
biases2 = torch.randn(1, dtype=float, requires_grad=True)
learning_rate = 0.001
losses = []
for i in range(1000):
# 前向传播
# 计算隐藏层
hidden = x.mm(weights) + biases
# 加入激活函数
hidden = torch.relu(hidden)
# 预测结果
predictions = hidden.mm(weights2) + biases2
# 计算损失
loss = torch.mean((predictions - y)**2)
losses.append(loss.data.numpy())
# 打印损失
if i % 100 == 0:
print('loss:', loss)
# 反向传播
loss.backward()
# 更新参数
weights.data.add_(- learning_rate * weights.grad.data)
biases.data.add_(- learning_rate * biases.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases2.data.add_(- learning_rate * biases2.grad.data)
# 梯度清零
weights.grad.data.zero_()
biases.grad.data.zero_()
weights2.grad.data.zero_()
biases2.grad.data.zero_()
训练结果
loss: tensor(3511.3141, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(154.7521, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(146.5845, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(144.1342, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(142.9047, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(142.1384, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(141.5937, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(141.1904, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(140.8811, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(140.6381, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss稳步下降
或者我们使用简化的方法
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(
torch.nn.Linear(input_size, hidden_size),
torch.nn.Sigmoid(),
torch.nn.Linear(hidden_size, output_size),
)
# 指定损失函数
cost = torch.nn.MSELoss(reduction='mean')
# 指定优化器
optimizer = torch.optim.Adam(my_nn.parameters(), lr=0.001)
# 训练网络
losses = []
for i in range(1000):
batch_loss = []
for start in range(0, len(input_features), batch_size):
end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
xx = torch.tensor(input_features[start:end], dtype=torch.float, requires_grad=True)
yy = torch.tensor(labels[start:end], dtype=torch.float, requires_grad=True)
prediction = my_nn(xx)
loss = cost(prediction, yy)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
batch_loss.append(loss.data.numpy())
if i % 100 == 0:
losses.append(np.mean(batch_loss))
print(i, np.mean(batch_loss))
最终我们进行预测,并以图片的形式展示
# 预测结果
x = torch.tensor(input_features, dtype=torch.float)
predict = my_nn(x).data.numpy() # 转化为numpy格式,tensor格式画不了图
# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
# 创建一个表格来保存日期和其对应的标签数值
true_data = pd.DataFrame(data={'date': dates, 'actual': labels})
# 再创建一个来存日期和其对应的模型预测值
months = features[:, features_list.index('month')]
days = features[:, features_list.index('day')]
years = features[:, features_list.index('year')]
test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
test_dates = dates
predictions_data = pd.DataFrame(data={'date': test_dates, 'prediction': predict.reshape(-1)})
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')
# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label='prediction')
plt.xticks(rotation='vertical');
plt.legend()
# 图名
plt.xlabel('Date')
plt.ylabel('Maximum Temperature (F)')
plt.title('Actual and Predicted Values')
plt.show()
说明:代码执行中所需要的包请自行pip install xx下载