PointRCNN之code学习笔记

input -> rpn -> rpn_cls,rpn_reg, backbone_xyz, backbone_features
rpn_cls, rpn_reg, backbone_xyz -> proposal_layer -> rois, roi_scores
rpn_score_norm = sigmoid(rpn_cls)
seg_mask = rpn_score_norm > score_thresh
pts_depth = norm2(backbone_xyz.z)
rcnn_input = ‘rpn_xyz(backbone_xyz), rpn_features(backbone_features), seg_mask,
roi_boxes3d(rois), pts_depth’

rcnn_int -> rcnn_net -> rcnn_cls, rcnn_reg

如何产生proposals
1、以每一帧上前景点(总数为N个)为中心,在每个点上,利用回归值以及设置的平均尺寸,生成初始proposals(大小为(batch_size*N, 7), [x,y,z,h,w,l,ry])
2、根据分类得到的得分,进行排序
3、对每一帧上排序后的proposals,根据其坐标z值来查找proposals:
0 40 4、返回生成的bbox3d及其对应的scores.

你可能感兴趣的:(检测,code学习)