有很多为了减少序列计算而引出的模型:Neural GPU\ByteNet\ConvS2S,它们使用卷积神经网络来并行化的计算。然而,这些模型的计算次数随着输入和输出间的距离增长而增长,带来了长期依赖问题。Transformer的计算次数是常数,但是是以减弱了位置信息为代价,具体的,它使用Multi-Head Attention来实现。
self-attention应用广泛,Transformer是第一个完全依赖于self-attention的transduction model,关于transduction model,感觉就是通过已观察的去预测未被观察的,特别用于语言模型、RNNs model。
大多数的神经序列transduction模型使用encoder将输入序列 ( x 1 , . . . x n ) (x_1,...x_n) (x1,...xn)映射到 ( z 1 , . . . z n ) ( z ) (z_1,...z_n) (z) (z1,...zn)(z)给定z,使用decoder一步一生成,Transformer也如此。
Encoder由6个一致Encoder Layer组成,所以定义了一个Encoder类以后,可以使用clones函数来复制Encoder Layer:
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
每一个Encoder Layer由两个sub-layers组成,每一个sub-layers的输出需要被送入到SublayerConnection进行 1. LayerNormalization(由单独的类LayerNorm完成) 2. ResidualConnection(定义在SublayerConnection类里面)
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))
回到EncoderLayer,两个sub-layers分别是self-attention mechanism 和 position-wise fully connected feed-forward network
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask):
"Follow Figure 1 (left) for connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) # 传入一个输入(x) 和 一个映射函数(sublayer)
return self.sublayer[1](x, self.feed_forward)
Decoder也由6个一致的DecoderLayer层组成
class Decoder(nn.Module):
"Generic N layer decoder with masking."
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
DecoderLayer和EncoderLayer有所不同,DecoderLayer由三个sub-layers组成,分别是Masked Multi-Head Attention、Multi-Head Attention和position-wise fully connected feed-forward network。特别说明的是:1. Masked Multi-Head Attention的输入是mask之后的x(用于掩盖当前要预测单词以及之后的信息) 2. Multi-Head Attention的Q\K\V中,Q是由Masked Multi-Head Attention生成,K和V是从encoder中来的。
同样的,每经过一个子层,需要通过SublayerConnection进行 1. LayerNormalization 2. ResidualConnection
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."
m = memory
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
return self.sublayer[2](x, self.feed_forward)
其中mask函数为:
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
每一行代表target句子中的一个单词,每一列代表对应单词能够看到的单词。如第1个单词只能看到第1个,第2个单词能看到1、2,第3个单词能看到1、2、3…
这里的Attention又被称为Scaled Dot-Product Attention,首先使用Q(bs, sent_len, d_k)和K(bs, sent_len, d_k)来计算weight(bs, sent_len, sent_len),再用weight对V(bs, sent_len, d_v)进行加权求和得到attention过后的向量表示(bs, sent_len, d_v)。
A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T / d k ) V Attention(Q,K,V) = softmax(QK^T/\sqrt{d_k})V Attention(Q,K,V)=softmax(QKT/dk)V
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
# query: ds, sent, d_k
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k) # ds, sent, sent
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
关于为什么要做缩放,可参照here
大概就是:如果 d k \sqrt{d_k} dk很大,q和k点积的数量级增长就很大,进一步导致softmax函数的梯度很小。而关于为什么点积的数量级会随着 d k d_k dk变大,假设q和k的成分是均值为0、方差为1的独立随机变量,那么它们的点积 q ⋅ k = ∑ i = 1 d k q i k i q·k=\sum_{i=1}^{d_k}q_ik_i q⋅k=∑i=1dkqiki的均值为0,方差就为 d k d_k dk,所以要缩放。
这里的attention还是多头的,被称为Multi-head attention。称上面attention函数的输出是一个head,代表一个子空间,现在通过h=8个映射矩阵,得到8组Q、K和V输入,进一步得到8个head,再拼接,再映射,得到输出。
M u l t i H e a d ( Q , K , V ) = C o n c a t ( h e a d 1 , . . . , h e a d 8 ) W o MultiHead(Q,K,V)=Concat(head_1,...,head_8)W^o MultiHead(Q,K,V)=Concat(head1,...,head8)Wo
w h e r e h e a d i = A t t e t i o n ( Q W i Q , K W i K , V W i V ) where head_i = Attetion(QW_i^Q,KW_i^K,VW_i^V) whereheadi=Attetion(QWiQ,KWiK,VWiV)
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4) # 这里的4不代表4个头,而是分别代表上面公式中的W_Q\W_K\W_V
W_O self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
# query; bs, sent, d_model
"Implements Figure 2"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
上面代码理解为:
Position-wise Feed Forward Networks:
F F N ( x ) = m a x ( 0 , x W 1 + b 1 ) W 2 + b 2 FFN(x) = max(0, xW_1+b_1)W_2+b_2 FFN(x)=max(0,xW1+b1)W2+b2
其中, W 1 W_1 W1:d_model=512 x d_ff=2048; W 2 W_2 W2:d_ff = 2048 x d_model = 512.
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
为什么要乘 d m o d e l \sqrt{d_{model}} dmodel?
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
PE的公式:
P E ( p o s , 2 i ) = s i n ( p o s / 1000 0 2 i / d m o d e l ) PE(pos,2i) = sin(pos/10000^{2i/d_{model}}) PE(pos,2i)=sin(pos/100002i/dmodel)
P E ( p o s , 2 i + 1 ) = c o s ( p o s / 1000 0 2 i / d m o d e l ) PE(pos,2i+1) = cos(pos/10000^{2i/d_{model}}) PE(pos,2i+1)=cos(pos/100002i/dmodel)
PE的代码:
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)],
requires_grad=False)
return self.dropout(x)
同一个维度(dim)在不同的位置(pos)上的值,构成正弦曲线:
plt.figure(figsize=(15, 5))
pe = PositionalEncoding(20, 0)
y = pe.forward(Variable(torch.zeros(1, 100, 20)))
plt.plot(np.arange(100), y[0, :, 4:8].data.numpy())
plt.legend(["dim %d"%p for p in [4,5,6,7]])
None
另外,positional embeddings也可以是和token embeddings一样的、可学习的参数矩阵,一方面,两者的结果差不多;另一方面,正弦版本的PE允许模型外推到比训练中遇到的序列长度更长的情况,所以选择正弦版本的。(We chose the sinusoidal version because it may allow the model to extraopolate to sequence lengths longer than the ones encountered during training)
def make_model(src_vocab, tgt_vocab, N=6,
d_model=512, d_ff=2048, h=8, dropout=0.1):
"Helper: Construct a model from hyperparameters."
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn),
c(ff), dropout), N),
nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab))
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform(p)
return model
tmp_model = make_model(10, 10, 2)
to be continued
http://nlp.seas.harvard.edu/2018/04/03/attention.html