实现:输入[0.5],输出[1, 0, 1, 1, 0, 0, 1, 0]
from torch import nn
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
torch.manual_seed(1)
matplotlib.rcParams['font.family'] = 'SimHei'
matplotlib.rcParams['axes.unicode_minus'] = False
plt.rcParams['figure.dpi'] = 150
class Discriminator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(8, 4),
nn.Sigmoid(),
nn.Linear(4, 1),
nn.Sigmoid()
)
def forward(self, inputs):
return self.model(inputs)
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(1, 4),
nn.Sigmoid(),
nn.Linear(4, 8),
nn.Sigmoid()
)
def forward(self, inputs):
return self.model(inputs)
def train():
D = Discriminator()
G = Generator()
loss_func = nn.BCELoss() # - [p * log(q) + (1-p) * log(1-q)]
optimiser_D = torch.optim.Adam(D.parameters(), lr=1e-3)
optimiser_G = torch.optim.Adam(G.parameters(), lr=1e-3)
output_list = []
for i in range(1000):
# 1 训练判别器
# 1.1 真实数据real_data输入D,得到d_real
real_data = torch.tensor([1, 0, 1, 1, 0, 0, 1, 0], dtype=torch.float)
d_real = D(real_data)
# 1.2 生成数据的输出fake_data输入D,得到d_fake
fake_data = G(torch.tensor([0.5])).detach() # detach:只更新判别器的参数
d_fake = D(fake_data)
# 1.3 计算损失值 ,判别器学习使得d_real->1、d_fake->0
loss_d_real = loss_func(d_real, torch.tensor([1.0]))
loss_d_fack = loss_func(d_fake, torch.tensor([0.]))
loss_d = loss_d_real + loss_d_fack
# 1.4 反向传播更新参数
optimiser_D.zero_grad()
loss_d.backward()
optimiser_D.step()
# 2 训练生成器
# 2.1 G的输出fake_data输入D,得到d_g_fake
fake_data = G(torch.tensor([0.5]))
d_g_fake = D(fake_data)
# 2.2 计算损失值,生成器学习使得d_g_fake->1
loss_g = loss_func(d_g_fake, torch.tensor([1.0]))
# 2.3 反向传播,优化
optimiser_G.zero_grad()
loss_g.backward()
optimiser_G.step()
if i % 100 == 0:
output_list.append(fake_data.detach().numpy())
print(fake_data.detach().numpy())
plt.imshow(np.array(output_list), cmap='Blues')
plt.colorbar()
plt.xticks([])
plt.ylabel('迭代次数X100')
plt.show()
if __name__ == '__main__':
train()
[ 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 ] [1, 0, 1, 1, 0, 0, 1, 0] [1,0,1,1,0,0,1,0]
实现:输入大小为[1,16]的随机数,生成大小为[1,512]且服从正态分布的数据。
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
import torch
import torch.nn as nn
import torch.optim as optim
torch.manual_seed(1)
np.random.seed(1)
matplotlib.rcParams['font.family'] = 'SimHei'
matplotlib.rcParams['axes.unicode_minus'] = False
plt.rcParams['figure.dpi'] = 150
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.model = nn.Sequential(
nn.Linear(16, 128),
nn.LeakyReLU(),
nn.Dropout(p=0.3),
nn.Linear(128, 256),
nn.LeakyReLU(),
nn.Dropout(p=0.3),
nn.Linear(256, 512)
)
def forward(self, inputs):
return self.model(inputs)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(512, 256),
nn.Tanh(),
nn.Linear(256, 128),
nn.Tanh(),
nn.Linear(128, 1),
nn.Sigmoid()
)
def forward(self, inputs):
return self.model(inputs)
def normal_pdf(x, mu, sigma):
''' 正态分布概率密度函数'''
pdf = np.exp(-((x - mu) ** 2) / (2 * sigma ** 2)) / (sigma * np.sqrt(2 * np.pi))
return pdf
def draw(G, epoch, g_input_size):
'''画目标分布和生成分布'''
plt.clf()
# 画出目标分布
x = np.arange(-3, 9, 0.2)
y = normal_pdf(x, 3, 1)
plt.plot(x, y, 'r', linewidth=2)
# 画出生成的分布
test_data = torch.rand(1, g_input_size)
data = G(test_data).detach().numpy()
mean = data.mean()
std = data.std()
x = np.arange(np.floor(data.min()) - 5, np.ceil(data.max()) + 5, 0.2)
y = normal_pdf(x, mean, std)
plt.plot(x, y, 'orange', linewidth=2)
plt.hist(data.flatten(), bins=20, color='y', alpha=0.5, rwidth=0.9, density=True)
plt.legend(['目标分布', '生成分布'])
plt.title('GAN:epoch' + str(epoch))
plt.show()
plt.pause(0.1)
def train():
G_mean = []
G_std = [] # 用于记录生成器生成的数据的均值和方差
data_mean = 3
data_std = 1 # 目标分布的均值和方差
batch_size = 64
g_input_size = 16
g_output_size = 512
epochs = 1001
d_epoch = 1 # 每个epoch判别器的训练轮数
# 初始化网络
D = Discriminator()
G = Generator()
# 初始化优化器和损失函数
d_learning_rate = 0.01
g_learning_rate = 0.001
loss_func = nn.BCELoss() # - [p * log(q) + (1-p) * log(1-q)]
optimiser_D = optim.Adam(D.parameters(), lr=d_learning_rate)
optimiser_G = optim.Adam(G.parameters(), lr=g_learning_rate)
plt.ion()
for epoch in range(epochs):
G.train()
# 1 训练判别器d_steps次
for _ in range(d_epoch):
# 1.1 真实数据real_data输入D,得到d_real
real_data = torch.tensor(np.random.normal(data_mean, data_std, (batch_size, g_output_size)),
dtype=torch.float)
d_real = D(real_data)
# 1.2 生成数据的输出fake_data输入D,得到d_fake
g_input = torch.rand(batch_size, g_input_size)
fake_data = G(g_input).detach() # detach:只更新判别器的参数
d_fake = D(fake_data)
# 1.3 计算损失值 ,判别器学习使得d_real->1、d_fake->0
loss_d_real = loss_func(d_real, torch.ones([batch_size, 1]))
loss_d_fake = loss_func(d_fake, torch.zeros([batch_size, 1]))
d_loss = loss_d_real + loss_d_fake
# 1.4 反向传播,优化
optimiser_D.zero_grad()
d_loss.backward()
optimiser_D.step()
# 2 训练生成器
# 2.1 G输入g_input,输出fake_data。fake_data输入D,得到d_g_fake
g_input = torch.rand(batch_size, g_input_size)
fake_data = G(g_input)
d_g_fake = D(fake_data)
# 2.2 计算损失值,生成器学习使得d_g_fake->1
loss_G = loss_func(d_g_fake, torch.ones([batch_size, 1]))
# 2.3 反向传播,优化
optimiser_G.zero_grad()
loss_G.backward()
optimiser_G.step()
# 2.4 记录生成器输出的均值和方差
G_mean.append(fake_data.mean().item())
G_std.append(fake_data.std().item())
if epoch % 10 == 0:
print("Epoch: {}, 生成数据的均值: {}, 生成数据的标准差: {}".format(epoch, G_mean[-1], G_std[-1]))
print('-' * 10)
G.eval()
draw(G, epoch, g_input_size)
plt.ioff()
plt.show()
plt.plot(G_mean)
plt.title('均值')
plt.savefig('gan_mean.jpg')
plt.show()
plt.plot(G_std)
plt.title('标准差')
plt.savefig('gan_std.jpg')
plt.show()
if __name__ == '__main__':
train()
GAN生成服从正态分布的数据.
参考:
[1] Generative adversarial nets, https://arxiv.org/abs/1406.2661
[2]PyTorch生成对抗网络编程。作者:Tariq Rashid;译者:韩江雷;出版社:人民邮电出版社
[3]https://mathpretty.com/10808.html
[4]https://www.jianshu.com/p/7d3a17f00312
[5] 视频BGM(人工智能AIVA作曲):Octet No. 1 in D Major, Op. 3: A Little Chamber Music
重点在【Pytorch】(十),未完待续。