Study-VTK:实现任意平面的切割
0 背景:
1 案例:
2切割类介绍
3.0 vtkExtractVOI
3.1 vtkImageReslice
3 案例实现
1.1 切割的实现:
1.2 计算焦点点:
1.3 一般输入影像都是dcm,需要保存成vti:
0 背景:
vtk关于三维影像(图片)的提取有两个类,vtkExtractVOI和vtkImageReslice。合理运用这两个可以实现任意大小、方向的三维影像切割。
doxygen文档:vtkExtractVOI、vtkImageReslice
1 案例:
用这两个类实现的demo,先用vtkImageReslice过影像中心,和process坐标系切割影像。让后计算四个点到中心距离换算为新影像上对应的坐标,再用vtkExtractVOI切割。实现任意方向、大小的模型切割。这种方式一次只能且两个轴,所以再重复一次(第二次x和y正好反向)。计算时候不能忽略间隙,否则新切割出来的会变形。
process x轴:长轴(鼠标选的前两个点)方向;
process y轴:original 的Z轴方向;
process z轴:鼠标选的后两个点方向。
四个点选择使用的是vtkBiDimensionalWidget
请添加图片描述请添加图片描述
2切割类介绍
3.0 vtkExtractVOI
vtkExtractVOI是一个筛选器,用于选择一部分输入结构化点数据集或对输入数据集进行子采样。(感兴趣的选定部分称为感兴趣的体积或VOI。)此过滤器的输出是结构化的点数据集。该过滤器处理任何拓扑尺寸(即点,线,图像或体积)的输入数据,并可以生成任何拓扑尺寸的输出数据。
要使用此过滤器,请设置VOI ivar,它们是ijk最小/最大索引,用于指定数据中的矩形区域。(请注意,这些是0偏移。)您还可以指定采样率对数据进行二次采样。
该过滤器的典型应用是从体积中提取切片以进行图像处理,对大体积进行二次采样以减小数据大小,或使用感兴趣的数据提取体积区域。
用法:
virtual void SetVOI (int[6])
// 提取roi在原来影像坐标系上的对角坐标
virtual void SetSampleRate (int, int, int)
// xyz三个轴上的采样频率
1
2
3
4
3.1 vtkImageReslice
沿一组新轴重新切割体积。
vtkImageReslice是图像几何过滤器的瑞士军刀:它可以以相当高的效率以任意组合来置换,旋转,翻转,缩放,重采样,变形和填充图像数据。
用法:
SetOutputDimensionality (int);
// 设置输出 结果是几维的 1/2/3
SetResliceAxes (vtkMatrix4x4 *);
// 设置变换矩阵
SetInterpolationModeToLinear();
// 设置采样方法
1
2
3
4
5
6
变换矩阵有很多接口输入
在这里插入图片描述
重采样方法:线性、三次线性、最邻近
在这里插入图片描述
3 案例实现
1.1 切割的实现:
计算新坐标系用vtkImageReslice切割
QList>points = original_bidimensional_->GetDisplayPosition();
QList center = vti_original_widget_->GetCenter();
QList origin = vti_original_widget_->GetOrigin();
QList spacing = vti_original_widget_->GetSpacing();
QList extent = vti_original_widget_->GetExtent();
double k = (points.at(0).at(1) - points.at(1).at(1)) /
(points.at(0).at(0) - points.at(1).at(0));
double jiaodu = atan(k);
double axialElements[16] = {
cos(jiaodu), 0, cos(jiaodu + 1.57), 0,
sin(jiaodu), 0, sin(jiaodu + 1.57), 0,
0, 1, 0, 0,
0, 0, 0, 1
};
vtkNew resliceAxes ;
resliceAxes->DeepCopy(axialElements);
resliceAxes->SetElement(0, 3, center.at(0));
resliceAxes->SetElement(1, 3, center.at(1));
resliceAxes->SetElement(2, 3, center.at(2));
vtkNew reslice;
reslice->SetInputData(vti_original_widget_->GetVtkImageData());
reslice->SetOutputDimensionality(3);
reslice->SetResliceAxes(resliceAxes);
reslice->SetInterpolationModeToLinear();
reslice->Update();
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
计算距离,用vtkExtractVOI提取。
int dims[3];
reslice->GetOutput()->GetDimensions(dims);
vtkNew extract_voi;
extract_voi->SetInputData(reslice->GetOutput());
qint32 new_z1, new_z2, new_y1, new_y2;
{
double b = center.at(1) - center.at(0) * k;
double line_a, line_b, line_c;
line_a = k;
line_b = -1;
line_c = b;
double length1, length2;
length1 = abs(line_a * points.at(2).at(0) +
line_b * points.at(2).at(1) +
line_c)
/ sqrt(line_a * line_a + line_b * line_b);
length2 = abs(line_a * points.at(3).at(0) +
line_b * points.at(3).at(1) +
line_c)
/ sqrt(line_a * line_a + line_b * line_b);
new_z1 =
static_cast(0.5 * (extent.at(1) - extent.at(0)) - length1 / spacing.at(0));
new_z2 =
static_cast(0.5 * (extent.at(1) - extent.at(0)) + length2 / spacing.at(0));
}
{
double b = center.at(1) - center.at(0) * (-1 / k);
double line_a, line_b, line_c;
line_a = -1 / k;
line_b = -1;
line_c = b;
double length1, length2;
length1 = abs(line_a * points.at(1).at(0) +
line_b * points.at(1).at(1) +
line_c)
/ sqrt(line_a * line_a + line_b * line_b);
length2 = abs(line_a * points.at(0).at(0) +
line_b * points.at(0).at(1) +
line_c)
/ sqrt(line_a * line_a + line_b * line_b);
new_y1 =
static_cast(0.5 * (extent.at(3) - extent.at(2)) -
(length1 / spacing.at(0)));
new_y2 =
static_cast(0.5 * (extent.at(3) - extent.at(2)) +
(length2 / spacing.at(0)));
}
extract_voi->SetVOI(
new_y1 > new_y2 ? new_y2 : new_y1,
new_y1 > new_y2 ? new_y1 : new_y2,
0, dims[1],
new_z1 > new_z2 ? new_z2 : new_z1,
new_z1 > new_z2 ? new_z1 : new_z2
);
extract_voi->Update();
vti_process_widget_->SetVtkImageData(extract_voi->GetOutput());
vti_process_widget_->BuildView();
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
1.2 计算焦点点:
vtkBiDimensionalRepresentation2D好像只有四个点世界坐标和局部坐标以及两条直线长度,没有中心焦点,需要自己求一下。
QList
double p1[3];
representation_->GetPoint1WorldPosition(p1);
double p2[3];
representation_->GetPoint2WorldPosition(p2);
double p3[3];
representation_->GetPoint3WorldPosition(p3);
double p4[3];
representation_->GetPoint4WorldPosition(p4);
QList
QList point1, point2, point3, point4, point5;
point1 << p1[0] << p1[1] << p1[2];
point2 << p2[0] << p2[1] << p2[2];
point3 << p3[0] << p3[1] << p3[2];
point4 << p4[0] << p4[1] << p4[2];
points << point1 << point2 << point3 << point4;
double p5[2];
double a1 = p2[1] - p1[1];
double b1 = p1[0] - p2[0];
double c1 = p1[0] * p2[1] - p2[0] * p1[1];
double a2 = p4[1] - p3[1];
double b2 = p3[0] - p4[0];
double c2 = p3[0] * p4[1] - p4[0] * p3[1];
double det = a1 * b2 - a2 * b1;
p5[0] = (c1 * b2 - c2 * b1) / det;
p5[1] = (a1 * c2 - a2 * c1) / det;
point5 << p5[0] << p5[1];
points << point5;
return points;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1.3 一般输入影像都是dcm,需要保存成vti:
感觉 vtkDICOMXXXXX贼难用,所以dcm、nii影像都用itk读写,让后转换成vti。mhd可以直接用vtk读写。
IntensityWindowingImageFilterType::Pointer intensityFilter =
IntensityWindowingImageFilterType::New();
ReaderType::Pointer reader = ReaderType::New();
ImageIOType::Pointer dicomIO = ImageIOType::New();
reader->SetImageIO(dicomIO);
NamesGeneratorType::Pointer nameGenerator = NamesGeneratorType::New();
nameGenerator->SetUseSeriesDetails(true);
nameGenerator->SetDirectory("/home/yx/Pictures/影像/Deeplv_测试影像/75%");
using SeriesIdContainer = std::vector< std::string >;
const SeriesIdContainer &seriesUID = nameGenerator->GetSeriesUIDs();
auto seriesItr = seriesUID.begin();
auto seriesEnd = seriesUID.end();
using FileNamesContainer = std::vector< std::string >;
FileNamesContainer fileNames ;
std::string seriesIdentifier;
while (seriesItr != seriesEnd) {
seriesIdentifier = seriesItr->c_str();
fileNames = nameGenerator->GetFileNames(seriesIdentifier);
++seriesItr;
}
reader->SetFileNames(fileNames);
try {
reader->Update();
} catch (itk::ExceptionObject &ex) {
Q_UNUSED(ex)
qWarning() << "read error";
}
intensityFilter->SetInput(reader->GetOutput());
intensityFilter->SetWindowMinimum(-200);
intensityFilter->SetWindowMaximum(400);
intensityFilter->SetOutputMinimum(0);
intensityFilter->SetOutputMaximum(1);
intensityFilter->Update();
typedef itk::ImageToVTKImageFilter< ImageType> itkTovtkFilterType;
itkTovtkFilterType::Pointer itkTovtkImageFilter = itkTovtkFilterType::New();
itkTovtkImageFilter->SetInput(intensityFilter->GetOutput());
itkTovtkImageFilter->Update();
vtkSmartPointer double_image_;
if (double_image_ == nullptr) {
double_image_ = vtkSmartPointer::New();
}
double_image_->DeepCopy(itkTovtkImageFilter->GetOutput());
qint32 extent[6];
double spacing[3];
double origin[3];
double_image_->GetExtent(extent);
double_image_->GetSpacing(spacing);
double_image_->GetOrigin(origin);
qDebug() << extent[0] << extent[1] << extent[2] << extent[3] << extent[4] << extent[5];
qDebug() << spacing[0] << spacing[1] << spacing[2];
qDebug() << origin[0] << origin[1] << origin[2];
vtkNew writer;
writer->SetInputData(double_image_);
writer->SetFileName("/home/yx/Desktop/original.vti");
writer->Write();
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
vtk学习教程
Study-VTK
本案例代码:
https://gitee.com/yaoxin001/WorkDemo
个人博客首页
http://118.25.63.144/