pytorch——TensorDataset,DataLoader

from torch.utils.data import TensorDataset, DataLoader
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_example_index)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

TensorDataset 对 tensor 进行打包,一一对应
Dataloader进行数据封装

a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = torch.tensor([44, 55, 66, 44, 55, 66, 44, 55, 66, 44, 55, 66])

# TensorDataset对tensor进行打包
train_ids = TensorDataset(a, b) 
for x_train, y_label in train_ids:
    print(x_train, y_label)

# dataloader进行数据封装
print('=' * 80)
train_loader = DataLoader(dataset=train_ids, batch_size=4, shuffle=True)
for i, data in enumerate(train_loader, 1):  
# 注意enumerate返回值有两个,一个是序号,一个是数据(包含训练数据和标签)
    x_data, label = data
    print(' batch:{0} x_data:{1}  label: {2}'.format(i, x_data, label))

Dataloader本质是一个可迭代对象,使用iter()访问,不能使用next()访问
也可以使用for inputs, labels in dataloaders进行可迭代对象的访问

DataLoader(object)的参数

dataset(Dataset): 传入的数据集
    batch_size(int, optional): 每个batch有多少个样本
    shuffle(bool, optional): 在每个epoch开始的时候,对数据进行重新排序
    sampler(Sampler, optional): 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False
    batch_sampler(Sampler, optional): 与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)
    num_workers (int, optional): 这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)
    collate_fn (callable, optional): 将一个list的sample组成一个mini-batch的函数
    pin_memory (bool, optional): 如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.

    drop_last (bool, optional): 如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了…
    如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。

    timeout(numeric, optional): 如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0
    worker_init_fn (callable, optional): 每个worker初始化函数 If not None, this will be called on each
    worker subprocess with the worker id (an int in [0, num_workers - 1]) as
    input, after seeding and before data loading. (default: None)

你可能感兴趣的:(学习,pytorch,深度学习,人工智能)