- 【深度学习-Day 33】从零到一:亲手构建你的第一个卷积神经网络(CNN)
吴师兄大模型
深度学习入门到精通深度学习cnn人工智能python大模型卷积神经网络(CNN)机器学习
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【深度学习】卷积神经网络(CNN)原理
chaser&upper
深度学习神经网络卷积计算机视觉
【深度学习】卷积神经网络原理1.卷积神经网络的组成2.卷积层2.1卷积运算过程3.padding-零填充3.1ValidandSame卷积3.2奇数维度的过滤器4.stride-步长5.多通道卷积5.1多卷积核(多个Filter)6.卷积总结7.池化层(Pooling)8.全连接层9.总结1.卷积神经网络的组成定义卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- 《R循环:深度解析与高效使用技巧》
沐知全栈开发
开发语言
《R循环:深度解析与高效使用技巧》引言R语言作为一种功能强大的统计计算和图形显示语言,被广泛应用于科研、数据分析、金融等领域。R循环是R语言中的核心概念之一,对于提高编程效率、处理复杂数据至关重要。本文将深度解析R循环,并介绍高效使用技巧,帮助读者更好地掌握R语言。一、R循环概述1.1什么是R循环R循环是指在R语言中,重复执行某个操作或代码段的过程。R循环包括for循环、while循环和repea
- DAY 45 Tensorboard使用介绍
HINOTOR_
Python训练营python开发语言
目录DAY45Tensorboard使用介绍1.tensorboard的发展历史和原理2.tensorboard的常见操作3.tensorboard在cifar上的实战:MLP和CNN模型作业:对resnet18在cifar10上采用微调策略下,用tensorboard监控训练过程。DAY45Tensorboard使用介绍1.tensorboard的发展历史和原理2.tensorboard的常见操
- Github 2024-11-01 开源项目月报 Top19
老孙正经胡说
github开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,本月(2024-11-01统计)共有19个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Python项目9TypeScript项目3JavaScript项目3Svelte项目1JupyterNotebook项目1Ruby项目1HTML项目1Rust项目1Java项目1C++项目1Go项目1Python中的算法实现集合创建周期:2831天
- 【AI】AI大模型发展史:从理论探索到技术爆发
不想当程序汪的第N天
AI人工智能
一、早期探索阶段—理论与技术奠基1.1符号主义与连接主义的博弈20世纪50-70年代,符号主义AI主导研究方向,通过专家系统模拟人类逻辑推理,但受限于计算能力和数据规模。80年代连接主义AI兴起,以神经网络为核心,反向传播算法的提出为深度学习奠定基础。1.2神经网络初步实践1980年:卷积神经网络(CNN)雏形诞生1998年:LeNet-5模型成功应用于手写数字识别,成为首个商用深度学习模型关键局
- 三分钟使用github的技巧
小白学CS
安装/使用教程运维githubgit
文章目录一、GitHub搜索技巧——找开发者二、GitHub搜索技巧——找项目三、in关键字限制搜索范围四、stars或fork数量去查找一、GitHub搜索技巧——找开发者搜索条件备注location:location:china,匹配用户填写的地址在chinalanguage:language:javascript,匹配开发语言为javascript的开发者followers:follower
- java+vue+SpringBoo智慧旅游系统(程序+数据库+报告+部署教程+答辩指导)
源代码+数据库+LW文档(1万字以上)+开题报告+答辩稿ppt+部署教程+代码讲解+代码时间修改工具技术实现开发语言:后端:Java前端:vue框架:springboot数据库:mysql开发工具JDK版本:JDK1.8数据库:mysql数据库工具:Navicat开发软件:idea主要角色及功能介绍本次系统的用例图做出了十分明确的功能划分,在设计时可以有很好的设计思路进行设计和延展。(1)管理员用
- YOLOv12 正式发布 | 检测效果超越YOLO11!!
论文地址:YOLOv12:Attention-CentricReal-TimeObjectDetectors代码地址:https://github.com/sunsmarterjie/yolov12提升YOLO框架的网络架构一直至关重要,尽管注意力机制在建模能力方面已被证明具有优越性,但长期以来一直专注于基于CNN的改进。这是因为基于注意力的模型无法与基于CNN的模型的速度相匹配。本文提出了一种以
- 推荐系统的视频特征-视频关键帧特征提取与向量生成
总体流程概览视频文件(.mp4)↓关键帧抽取(FFmpeg/SceneDetect)↓帧图像(.jpg)↓图像模型提取特征(CLIP/CNN/ViT)↓多帧聚合成视频向量(均值池化等)↓向量库/推荐系统模型特征提取推荐:使用OpenAI的CLIP模型CLIP(ContrastiveLanguage-ImagePretraining)适合推荐系统做跨模态建模,对视频封面帧或场景帧提取效果非常好。✅1
- 鸿蒙仓颉语言开发实战教程:购物车页面
合集-仓颉教程(31)1.详解鸿蒙仓颉开发语言中的日志打印问题05-212.鸿蒙仓颉开发语言实战教程:实现商城应用首页05-223.鸿蒙仓颉开发语言实战教程:页面跳转和传参05-254.鸿蒙仓颉语言开发教程:页面和组件的生命周期05-285.鸿蒙仓颉语言开发实战教程:购物车页面06-036.鸿蒙仓颉语言开发实战教程:商城登录页06-047.鸿蒙仓颉语言开发实战教程:商城搜索页06-058.鸿蒙仓颉
- 【有源码】基于爬虫+python的美食数据分析与可视化flask热门美食推荐系统的设计与实现
Q2643365023
Python大数据python爬虫计算机毕设选题毕业设计源码计算机毕设项目数据分析美食推荐系统
注意:该项目只展示部分功能,如需了解,文末咨询即可。本文目录1.开发环境2系统设计2.1设计背景2.2设计内容3系统展示3.1功能展示视频3.2系统页面4更多推荐5部分功能代码1.开发环境开发语言:Python采用技术:flask、爬虫数据库:MySQL开发环境:PyCharm2系统设计2.1设计背景在现代社会中,人们对美食的兴趣和需求日益增长。互联网和社交媒体的普及使得各种美食信息、评论和推荐变
- 小程序领域开发语言的基础教程
小程序开发2020
小程序开发语言ai
小程序领域开发语言的基础教程:从0到1轻松入门关键词:小程序开发、WXML、WXSS、JavaScript、双线程模型、生命周期、组件化摘要:本文是针对小程序开发语言的零基础入门指南,通过生活类比、代码示例和实战案例,详细讲解小程序核心开发语言(WXML/WXSS/JavaScript)的原理、协作方式及实际应用。无论你是前端新手还是想转行小程序开发的小白,都能通过本文掌握小程序开发的“三板斧”,
- R语言与C语言混合编程:在R语言中调用C语言函数
数据探索
r语言c语言开发语言R语言
R语言与C语言混合编程:在R语言中调用C语言函数介绍:R语言是一种用于统计分析和数据可视化的高级编程语言,而C语言是一种通用的、强大的编程语言。在某些情况下,我们可能需要在R语言中调用C语言函数以提高性能或实现特定的功能。本文将介绍如何在R语言中调用C语言函数的方法,并提供相应的源代码示例。步骤:为了在R语言中调用C语言函数,我们需要执行以下步骤:编写C语言函数:首先,我们需要编写我们想要在R中调
- 倾向得分匹配的stata命令_R语言系列1:倾向得分匹配
weixin_39995108
倾向得分匹配的stata命令
1PSM简介倾向评分匹配(PropensityScoreMatching,简称PSM)是一种统计学方法,用于处理观察研究(ObservationalStudy)的数据。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confoundingvariable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。这种方法最早由PaulRosen
- r语言 回归分析 分类变量_R语言下的PSM分析分类变量处理与分析步骤
weixin_39715834
r语言回归分析分类变量r语言清除变量
最近学习了PSM,我选择了用R去跑PSM,在这过程中遇到了许多问题,最后也都一一解决了,写下这个也是希望大家在遇到相同问题的时候能够得到帮助和启发,别的应该不会遇到太难的问题了哈哈。最近我也没做什么,录数据,或者说还在调整心态,最近遇到的事情也比较多,又或者说最近的心态比较乱,晚上也睡不好导致白天也比较烦躁,所以可能还是需要一段时间去好好调整,因此最近更新的也比较慢。不过还是会坚持的。问题阐述:1
- R语言倾向性匹配得分(PSM)分析
后端工程实践
r语言java开发语言R语言
R语言倾向性匹配得分(PSM)分析倾向性匹配得分(PropensityScoreMatching,PSM)是一种常用的统计方法,用于处理观察研究中的选择性偏倚。它通过建立一个倾向性得分模型,将受试者分为处理组和对照组,以实现类似于随机对照试验的效果。本文将介绍如何使用R语言进行倾向性匹配得分分析,并提供相应的源代码。导入所需的R包在进行PSM分析之前,首先需要导入所需的R包。常用的包包括Match
- HarmonyOS NEXT仓颉开发语言实战案例:外卖App
幽蓝计划
开发语言harmonyos
各位周末好,今天为大家来仓颉语言外卖App的实战分享。我们可以先分析一下页面的布局结构,它是由导航栏和List容器组成的。幽蓝君目前依然没有找到仓颉语言导航栏的系统组件,还是要自定义,这个导航栏有三部分内容,可以使用两端对齐,要注意的是,如果需要中间部分在页面中间需要两端的内容宽度相同。导航栏和页面的布局结构代码如下:Column{Row{Text('幽蓝外卖').fontColor(Color.
- HarmonyOS NEXT仓颉开发语言实现画板案例
营养师老鲜
harmonyos开发语言华为
合集-仓颉教程(29)1.详解鸿蒙仓颉开发语言中的日志打印问题05-212.鸿蒙仓颉开发语言实战教程:实现商城应用首页05-223.鸿蒙仓颉开发语言实战教程:页面跳转和传参05-254.鸿蒙仓颉语言开发教程:页面和组件的生命周期05-285.鸿蒙仓颉语言开发实战教程:购物车页面06-036.鸿蒙仓颉语言开发实战教程:商城登录页06-047.鸿蒙仓颉语言开发实战教程:商城搜索页06-058.鸿蒙仓颉
- 鸿蒙Next仓颉语言开发实战教程:店铺详情页
杨凌晨
harmonyos华为
合集-仓颉教程(27)1.详解鸿蒙仓颉开发语言中的日志打印问题05-212.鸿蒙仓颉开发语言实战教程:实现商城应用首页05-223.鸿蒙仓颉开发语言实战教程:页面跳转和传参05-254.鸿蒙仓颉语言开发教程:页面和组件的生命周期05-285.鸿蒙仓颉语言开发实战教程:购物车页面06-036.鸿蒙仓颉语言开发实战教程:商城登录页06-047.鸿蒙仓颉语言开发实战教程:商城搜索页06-058.鸿蒙仓颉
- HarmonyOS NEXT仓颉开发语言实战案例:动态广场
SSA丝社APP
harmonyos开发语言华为
合集-仓颉教程(29)1.详解鸿蒙仓颉开发语言中的日志打印问题05-212.鸿蒙仓颉开发语言实战教程:实现商城应用首页05-223.鸿蒙仓颉开发语言实战教程:页面跳转和传参05-254.鸿蒙仓颉语言开发教程:页面和组件的生命周期05-285.鸿蒙仓颉语言开发实战教程:购物车页面06-036.鸿蒙仓颉语言开发实战教程:商城登录页06-047.鸿蒙仓颉语言开发实战教程:商城搜索页06-058.鸿蒙仓颉
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- 高效主机发现与端口枚举:fscan工具实战指南
Bruce_xiaowei
笔记总结经验网络安全fscan信息搜集
高效主机发现与端口枚举:fscan工具实战指南在网络安全领域,主机发现与端口枚举是渗透测试和信息收集的基础环节。本文将深入探讨fscan这一高效工具的核心技术原理与实战应用,帮助你快速掌握网络扫描的核心技能。一、fscan与Nmap工具对比特性fscanNmap开发语言Python3C++主要功能主机探测、端口扫描、漏洞检测主机发现、服务识别、OS检测爆破能力内置弱口令检测需配合其他工具扫描速度极
- R语言入门课| 05 一文掌握R语言常见数据类型
Biomamba生信基地
r语言信息可视化开发语言生信医药
视频教程大家可以先做一做R语言基础小测验,看看自己是否需要跟我们5.5h入门R语言的课程。先上教程视频,B站同步播出:https://www.bilibili.com/video/BV1miNVeWEkw完整视频回放和答疑服务可见:5.5h入门R语言本节课程视频:(点击此处查看)"R语言入门课"是我们认为生信小白入门不得不听的一个课程,我们也为这个课程准备了许多干货。R语言的精髓便是数据处理,在本
- CNN-LSTM神经网络多输入单输出回归预测【MATLAB】
沅_Yuan
炼丹师神经网络cnnlstm
1CNN(卷积神经网络)部分作用:特征提取:CNN主要用于从输入数据中提取空间特征。它能够处理图像、视频帧或其他形式的空间数据。组成部分:卷积层:使用卷积核对输入数据进行卷积操作,生成特征图。激活函数:通常使用ReLU(线性整流单元)激活函数,增加非线性。池化层:通过最大池化(MaxPooling)或平均池化(AveragePooling),减少特征图的尺寸,保留最重要的特征,减少计算复杂度。流程
- DAY 41 简单CNN
冬天给予的预感
cnn人工智能神经网络
知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Dense(Output)importtorchimporttorch.nnasnnimpo
- Python打卡训练营-Day41-简单CNN
traMpo1ine
cnnpython深度学习
@浙大疏锦行知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Dense(Output)这里相关的概念比较多,如果之前没有学习过复试班强化班中
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round