- 磨人小妖精-tensorflow之removed in a future version
凯旋的铁铁
磨人的小妖精pythontensorflow
TensorFlow1.14版本TensorFlow使用五个不同级别的日志消息。按照上升的顺序,它们是DEBUG,INFO,WARN,ERROR和FATAL。当您在任何这些级别配置日志记录时,TensorFlow将输出与该级别相对应的所有日志消息以及所有级别的严重级别。例如,如果设置了ERROR的日志记录级别,则会收到包含ERROR和FATAL消息的日志输出,如果设置了一个DEBUG级别,则会从所
- 【Python深入浅出㊸】解锁Python3中的TensorFlow:开启深度学习之旅
奔跑吧邓邓子
Python深入浅出python深度学习tensorflow
目录一、TensorFlow简介1.1定义与背景1.2特点二、Python3与TensorFlow的关系2.1版本对应2.2为何选择Python3三、安装TensorFlow3.1安装步骤3.2验证安装四、TensorFlow基本概念与使用方法4.1计算图(Graph)4.2会话(Session)4.3张量(Tensor)4.4变量(Variable)4.5占位符(Placeholder)五、Te
- keras实现TCN网络层
谦虚且进步
深度学习预测keras人工智能深度学习
keras实现TCN网络层,keras3.0可用。fromkeras.layersimportLambda,Dense,Layer,Conv1DimporttensorflowastfclassTCNCell(Layer):"""sumary_line:Chinese:让输入的时间序列[bs,seql,dim]提升kernel_size倍的感受野English:Doublethereceptive
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- 关于pip Install与conda install
ClaNNEd@
DeepLearningpipconda
conda解决依赖的问题很弱,环境包多了以后经常要解决依赖几分钟到十几分钟。我个人感觉比较好的实践是conda创建虚拟环境,装torch/tensorflow等比较难装的包,基础环境配好以后,后面装包一律用pip。conda,pip,anaconda,miniconda的区别网页https://www.quora.com/What-is-the-comparison-among-conda-vs-
- 基于华为自研NPU Ascend 910的TensorFlow 1.x训练脚本迁移和使能混合精度记录
Tianyi Li 1997
华为云tensorflow华为人工智能深度学习python
简介基于TesorFlow1.x以Sess.run形式搭建入门级——手写数字分类网络,并迁移到华为自研NPUAscend910,同时使能混合精度。硬件介绍华为自研NPUAscend910,即昇腾910AI处理器(简称NPU),根据官方介绍,是在2019年发布的人工智能(AI)专用的神经网络处理器,其算力高达256T,最新款算力高达310T,是业界主流芯片算力的2倍。当前业界大多数训练脚本基于Ten
- PyTorch 与 TensorFlow 的深度解析:全面比较两大深度学习框架,助你选择最适合的工具
BuluAI
深度学习pytorchtensorflow
在人工智能的浪潮中,深度学习框架成为了开发者们的得力助手。PyTorch和TensorFlow作为其中的佼佼者,各自拥有庞大的用户群体和强大的社区支持。但它们在设计理念、使用体验和应用场景上有着显著的差异。今天,我们就来深入探讨这两个框架的特点,帮助你在项目中做出更明智的选择。计算图的构建方式PyTorch的动态图机制是其一大特色。在PyTorch中,计算图是在程序运行时动态构建的,这使得开发者可
- 【深度学习入门实战】基于Keras的手写数字识别实战(附完整可视化分析)
机器学习司猫白
深度学习深度学习keras人工智能机器学习python
本人主页:机器学习司猫白ok,话不多说,我们进入正题吧项目概述本案例使用经典的MNIST手写数字数据集,通过Keras构建全连接神经网络,实现0-9数字的分类识别。文章将包含:关键概念图解完整实现代码训练过程可视化模型效果深度分析环境准备importnumpyasnpimportmatplotlib.pyplotaspltfromtensorflowimportkerasfromtensorflo
- Windows下安装CPU用的Tensorflow
Coder LM Wang
Python
刚在电脑上安装了Tensorflow,还是碰到了一些麻烦,记录一下:很多教程是介绍怎么在Linux平台下安装的,或者是Windows平台下GPU用的,很可惜,这些教程对我来说太麻烦了。安装步骤:1)安装Python。版本:python-3.6.4-amd64.exe。2)cmd,命令行输入:python,查看Python版本号,以验证Python是否安装成功了。3)继续在命令行输入:pipinst
- conda 装tensorboardx_【工欲善其事】TensorboardX的使用
weixin_39719042
conda装tensorboardx
“我不喜欢Tensorflow,但这并不妨碍我使用tensorboard”上一篇文章(https://zhuanlan.zhihu.com/p/39849027),和大家简单地聊了一下关于如何在训练过程中有序地组织log问题。今天,想和大家简单地谈谈tensorboard的使用。经过社区的努力,目前PyTorch也可以使用tensorboard了。在训练过程中实时地观察loss/accuracy曲
- 深度学习-情感分析
小赖同学啊
人工智能深度学习人工智能
以下将分别使用PyTorch和TensorFlow框架实现基于深度学习的情感分析,这里以影评的情感分析为例,数据集使用IMDB影评数据集。使用PyTorch实现1.安装必要的库pipinstalltorchtorchtextspacypython-mspacydownloaden_core_web_sm2.代码实现importtorchimporttorch.nnasnnimporttorch.o
- 神经网络常见激活函数 9-CELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络python
文章目录CELU函数+导函数函数和导函数图像优缺点pytorch中的CELU函数tensorflow中的CELU函数CELU连续可微指数线性单元:CELU(ContinuouslyDifferentiableExponentialLinearUnit),是一种连续可导的激活函数,结合了ELU和ReLU的特点,旨在解决ELU在某些情况下的梯度问题。函数+导函数CELU函数CELU(x)={xx≥0α
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- 神经网络常见激活函数 7-ELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络
文章目录ELU函数+导函数函数和导函数图像优缺点pytorch中的ELU函数tensorflow中的ELU函数ELU指数线性单元:ELU(ExponentialLinearUnit)函数+导函数ELU函数ELU={xx>=0α(ex−1)x=0\\\alpha(e^x-1)\quad&x=0x=0αexx=0\\\alphae^x\quad&x=0x0,x,alpha*(np.exp(x)-1))
- (python)如何看自己安装的包的版本
9677
Pythonpython开发语言
linuxpiplist|grep"numpy\|scipy\|tensorflow\|keras"windows环境下piplist|findstr"numpyscipytensorflowkeras"输出numpy1.13.1scipy0.19.1tensorflow-cpu2.4.0tensorflow-estimator2.4.0tensorflow-gpu2.4.0
- 【野生动物识别系统】Python+深度学习+人工智能+卷积神经网络算法+TensorFlow+ResNet+图像识别
图像识别深度学习
一、介绍动物识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对18种动物数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张动物图片识别其名称。目前可识别的动物有:'乌龟','云豹','变色龙','壁虎','狞猫','狮子','猎豹','美洲狮','美洲虎','老虎','蜥蜴','
- 【蔬菜识别】Python+深度学习+CNN卷积神经网络算法+TensorFlow+人工智能+模型训练
图像识别深度学习人工智能
一、介绍蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆','大白菜','大葱','莲藕','菠菜','西红柿','韭菜','黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。二、系统效果图片展示三、演示视
- 基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
一、介绍蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)","毒鹅膏菌(Amanita)","牛肝菌(Boletus)","网状菌(Cortinarius)","毒镰孢(Entoloma)","湿孢菌(Hygrocybe)","乳菇(Lactarius)","红菇(Russula)","
- 深度学习-电商推荐
小赖同学啊
人工智能深度学习人工智能
下面为你介绍使用深度学习实现电商推荐系统的代码示例。我们将构建一个基于神经网络的简单推荐模型,以用户的历史购买行为和商品特征为基础,预测用户对商品的偏好。这里我们使用Python的TensorFlow和Keras库来实现。问题分析电商推荐系统的核心目标是根据用户的历史行为和商品特征,预测用户对未购买商品的喜好程度,从而为用户推荐可能感兴趣的商品。我们将通过构建一个神经网络模型,输入用户特征和商品特
- 实践深度学习:构建一个简单的图像分类器
是Dream呀
深度学习人工智能
引言深度学习在图像识别领域取得了巨大的成功。本文将指导你如何使用深度学习框架来构建一个简单的图像分类器,我们将以Python和TensorFlow为例,展示从数据准备到模型训练的完整流程。环境准备在开始之前,请确保你的环境中安装了以下工具:Python3.xTensorFlow2.xNumPyMatplotlib(用于数据可视化)你可以通过以下命令安装所需的库:pipinstalltensorfl
- NVIDIA-docker Cheatsheet
weixin_30758821
运维开发工具shell
TensorFlowDockerrequirementsInstallDockeronyourlocalhostmachine.ForGPUsupportonLinux,installnvidia-docker.Note:Torunthedockercommandwithoutsudo,createthedockergroupandaddyouruser.Fordetails,seethepost
- 人工智能在制造业的具体应用案例-总纲
局外人_Jia
人工智能c#大数据
人工智能在制造业的具体应用案例,结合C#语言实现的技术方案和示例代码:1.预测性维护(PredictiveMaintenance)通过分析设备传感器数据,预测设备故障并提前安排维护。技术方案数据采集:使用C#通过IoT协议(如MQTT、OPCUA)实时采集设备传感器数据(温度、振动等)。模型训练:使用ML.NET或TensorFlow.NET训练回归模型,预测设备剩余寿命。实时预测:将模型部署到C
- TensorFlow 学习笔记--基础文本分类
小陈加油中···
tensorflow学习笔记
电影评论文本分类官网的教程代码有一些问题:1.调用文件夹时,官网的调用方式有错。2.调用vectorize_layer没有返回,3.模型编译时,metics写错了。4.最后新的数据要转为张量才能用来预测。这笔记里代码里都改过来了文章目录电影评论文本分类导入库下载IMDB数据集加载数据集对训练数据进行预处理创建神经网络模型编译模型训练模型评估模型导出模型对新数据进行预测参考:[基本文本分类](htt
- ChatTTS,一款基于Python的自然语言处理项目
m0_75259337
活动文章活动文章
####文章标题:热门GitCode项目推荐:从技术角度分析ChatTTS 在GitCode平台上,有许多优秀的开源项目供我们学习和使用。今天,我将为大家推荐一个非常热门且具有很高技术含量的项目——ChatTTS。 **项目介绍**:ChatTTS是一个基于Python的自然语言处理项目,它能够将文本转换为语音。该项目使用TensorFlow和Gensim库进行语音合成和文本分析,使得生成
- 神经网络常见激活函数 6-RReLU函数
亲持红叶
神经网络常见激活函数神经网络人工智能深度学习机器学习pytorch激活函数
文章目录RReLU函数+导函数函数和导函数图像优缺点pytorch中的RReLU函数tensorflow中的RReLU函数RReLU随机修正线性单元:RandomizedLeakyReLU函数+导函数RReLU函数RReLU={xx≥0axx=0,inputs,alpha*inputs)#创建RReLU激活函数层rrelu=RReLU()#生成随机输入x=tf.random.normal([2])
- pycharm中安装scikit-image报错
LittleWhite123
PYTHONpythonnumpypiptensorflow
pycharm中安装scikit-image:从pycharm中或者terminal中,都安装不成功环境:windows10python==3.6.6tensorflow==1.10.0解决方案:1.按照提示,升级pip,报错:CouldnotinstallpackagesduetoanEnvironmentError:[WinError5]拒绝访问。Considerusingthe`--user
- 人工智能应用-智能驾驶精确的目标检测和更高级的路径规划
小赖同学啊
人工智能人工智能目标检测计算机视觉
实现更精确的目标检测和更高级的路径规划策略是自动驾驶领域的核心任务。以下是一个简化的示例,展示如何使用Python和常见的AI库(如TensorFlow、OpenCV和A*算法)来实现这些功能。1.环境准备首先,确保安装了以下库:pipinstalltensorflowopencv-pythonnumpymatplotlib2.目标检测(使用预训练的深度学习模型)目标检测可以使用预训练的深度学习模
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- TensorFlow 与 PyTorch 的直观区别
Cacciatore->
tensorflowpytorch人工智能python机器学习深度学习
背景TensorFlow与PyTorch都是比较流行的深度学习框架。tf由谷歌在2015年发布,而PyTorch则是FacecbookAI研究团队2016年在原来Torch的基础上发布的。tf采用的是静态计算图。这意味着在执行任何计算之前,你需要先定义好整个计算图,之后再执行。这种方式适合大规模生产环境,可以优化计算图以提高效率。tf的早期版本比较复杂,但在集成Keras库之后相当容易上手。PyT
- 【ubuntu下验证下菜品识别,训练,部署,验证 CNN + TensorFlow / PyTorch】
追心嵌入式
cnntensorflow
下来我会详细介绍如何在Ubuntu上运行你训练和部署的菜品识别模型,确保每一步都能理解并能在你的系统中运行。环境准备1.1安装必要的软件在Ubuntu上,首先需要安装Python和相关的依赖库:更新系统:打开终端,运行以下命令:bashsudoaptupdate&&sudoaptupgrade-y安装Python及pip:确保你的系统已经安装了Python3和pip,如果没有,可以使用以下命令安装
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22 fred@myhost.com
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla