- 大模型——什么是 Vibe Coding?从零开始学习 AI 辅助编程
不二人生
大模型学习人工智能大模型辅助编程
大模型——什么是VibeCoding?从零开始学习AI辅助编程VibeCoding:代码消失,直觉驱动的软件开发新浪潮?生成式人工智能的指数级增长正不断重塑各个行业,软件开发领域也不例外。大约在2025年初,一股源自美国硅谷的新思潮开始引起关注:开发者似乎可以借助AI工具,在几乎不直接编写代码的情况下构建产品。这种依赖直觉、跳脱传统编码苦役的开发方式,被赋予了一个颇具时代感的名字——VibeCod
- 【动手学深度学习】4.10 实战Kaggle比赛:预测房价
XiaoJ1234567
《动手学深度学习》深度学习人工智能
目录4.10实战Kaggle比赛:预测房价1)数据预处理2)模型定义与训练3)模型评估与预测4)模型训练与预测提交5)示例超参数(可调)4.10实战Kaggle比赛:预测房价数据来源:Kaggle房价预测比赛.1)数据预处理读取数据importpandasaspdtrain_data=pd.read_csv('../data/kaggle_house_pred_train.csv')test_da
- 【机器学习-08】参数调优宝典:网格搜索与贝叶斯搜索等攻略
云天徽上
机器学习机器学习人工智能
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- PyTorch 在 Python 自然语言处理中的运用
Python编程之道
Python编程之道pythonpytorch自然语言处理ai
PyTorch在Python自然语言处理中的运用关键词:PyTorch,Python,自然语言处理,深度学习,文本分类,情感分析摘要:本文全面探讨了PyTorch在Python自然语言处理(NLP)领域的运用。首先介绍了相关背景知识,包括目的范围、预期读者等内容。接着详细阐述了核心概念,如词嵌入、循环神经网络等,并给出了相应的原理示意图和流程图。深入讲解了核心算法原理,结合Python代码进行详细
- 企业内网系统:从传统开发到智能赋能的进化之路
飞算JavaAI开发助手
科技人工智能大数据java
在当今数字化浪潮中,企业内网系统作为支撑日常运营的核心基础设施,其开发效率与质量直接关系到企业的竞争力。传统开发模式下,程序员需要手动完成需求分析、架构设计、代码编写、测试调试等全流程工作,不仅耗时费力,还容易因人为疏忽导致质量隐患。而随着人工智能技术的突破性进展,以飞算JavaAI为代表的智能开发工具正在重塑企业内网系统的开发范式,为程序员提供从设计到落地的全链路智能支持。一、传统企业内网系统开
- 颠覆人机交互!多模态 AI Agents 大模型如何用 5 大模式开启智能新时代?
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列七颠覆人机交互!多模态AIAgents大模型如何用5大模式开启智能新时代?一、从“单一感知”到“多模态融合”:A
- 实操 SpringBoot+MCP!
清风孤客
springboot后端java人工智能
引言随着人工智能的飞速发展,大语言模型(LLM)正在革命性地重塑用户与软件的交互范式。想象一下这样的场景:用户无需钻研复杂的API文档或者在繁琐的表单间来回切换,只需通过自然语言直接与系统对话——“帮我查找所有2023年出版的图书”、“创建一个新用户叫张三,邮箱是
[email protected]”。这种直观、流畅的交互方式不仅能显著降低新用户的学习曲线,更能大幅削减B端系统的培训成本和实施
- 如何学习智能体搭建
如何学习智能体搭建前言随着人工智能的发展,智能体(Agent)成为自动化、交互式应用和自主决策系统中的核心角色。本书将从零基础出发,系统讲解智能体的基本原理、常见框架、实战搭建与进阶技巧,帮助你快速上手并应用于实际项目。目录智能体基础认知智能体的核心组成主流智能体开发框架本地智能体与云端智能体选型智能体的任务自动化与插件集成智能体的知识检索与上下文管理智能体的多模态扩展智能体安全与可控性智能体实战
- [特殊字符] AlphaGo:“神之一手”背后的智能革命与人机博弈新纪元
大千AI助手
人工智能Python#OTHER人工智能算法数据挖掘机器学习alphagogoogle围棋
从围棋棋盘到科学前沿的通用人工智能范式突破本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与历史意义AlphaGo是由谷歌DeepMind团队开发的围棋人工智能程序,其里程碑意义在于:首破人类围棋壁垒:2016年以4:1击败世界冠军李世石九段,成为首个在完整对局中战胜人类顶尖棋手的AI。
- 量化价值投资中的深度学习技术:TensorFlow实战
量化价值投资中的深度学习技术:TensorFlow实战关键词:量化价值投资,深度学习,TensorFlow,股票预测,因子模型,LSTM神经网络,量化策略摘要:本文将带你走进"量化价值投资"与"深度学习"的交叉地带,用小学生都能听懂的语言解释复杂概念,再通过手把手的TensorFlow实战案例,教你如何用AI技术挖掘股票市场中的价值宝藏。我们会从传统价值投资的痛点出发,揭示深度学习如何像"超级分析
- 【人工智能】Spring AI Alibaba,一个面向 Java 开发者的开源框架,它旨在简化将人工智能(AI)功能集成到应用程序中的过程。
本本本添哥
A-AIGC人工智能大模型人工智能javaspring
一、SpringAIAlibaba介绍SpringAIAlibaba是一个面向Java开发者的开源框架,它旨在简化将人工智能(AI)功能集成到应用程序中的过程。该项目基于SpringAI构建,并且是阿里云通义系列模型及服务在JavaAI应用开发领域的最佳实践。SpringAIAlibaba的目标是为开发者提供一套高层次的AIAPI抽象以及与云原生基础设施的深度集成方案,从而帮助他们快速构建智能应用
- 模型融合与人机协同:构建人机共生的智能未来
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在科技日新月异的今天,人工智能(AI)已经成为了我们生活中不可或缺的一部分。从智能手机,到自动驾驶汽车,再到医疗诊断,AI的应用已经渗透到了我们生活的方方面面。然而,尽管AI的发展已经取得了显著的成就,但是我们仍然面临着一个重大的挑战:如何让AI系统更好地理解和适应人类的需求,以实现人机共生的智能未来。为了解决这个问题,越来越多的研究者开始探索模型融合和人机协同的方法。2.核心概念与联
- vLLM 优化与调优:提升模型性能的关键策略
强哥之神
人工智能深度学习计算机视觉deepseek智能体vllm
在当今人工智能领域,大语言模型(LLM)的应用日益广泛,而优化和调优这些模型的性能成为了至关重要的任务。vLLM作为一种高效的推理引擎,提供了多种策略来提升模型的性能。本文将深入探讨vLLMV1的优化与调优策略,帮助读者更好地理解和应用这些技术。抢占式调度(Preemption)由于Transformer架构的自回归特性,有时键值缓存(KVcache)空间不足以处理所有批量请求。在这种情况下,vL
- Spring Data Neo4j 与后端人工智能算法的数据交互
AI大模型应用实战
springneo4j人工智能ai
SpringDataNeo4j与后端人工智能算法的数据交互关键词:SpringDataNeo4j、图数据库、人工智能算法、数据交互、知识图谱、图神经网络、数据集成摘要:本文深入探讨了如何利用SpringDataNeo4j框架实现后端人工智能算法与图数据库的高效数据交互。文章首先介绍了图数据库和人工智能算法的基本概念,然后详细解析了SpringDataNeo4j的核心架构和原理。接着,通过实际代码示
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- 【AI大模型】深入解析预训练:大模型时代的核心引擎
我爱一条柴ya
学习AI记录深度学习人工智能aipythonAI编程算法
预训练已成为现代人工智能,尤其是自然语言处理和计算机视觉领域的基石技术。它彻底改变了模型开发范式,催生了BERT、GPT等革命性模型。本文将系统阐述预训练的核心概念、原理、方法、应用及挑战。一、预训练的本质:为何需要它?核心问题:数据标注的瓶颈监督学习依赖海量高质量标注数据,获取成本极高(时间、金钱、专业知识)。对于复杂任务(如理解语义、生成文本),标注难度呈指数级上升。标注数据稀缺导致模型泛化能
- 广州曼顿2P数字微断:保护电力设备的安全守护者
mdkk678
安全
在现代社会,电力设备的安全运行对各行各业至关重要。然而,电力系统中存在各种电压波动、过载和短路等问题,可能对设备造成损害。为了保护电力设备免受这些问题的影响,广州曼顿推出了2P数字微断器。本文将介绍这一创新产品的特点和优势,以及它对电力设备的保护作用。广州曼顿科技有限公司专注用户侧智慧数字电气产品研制,以及智慧电能服务大数据云平台建设。基于人工智能技术,大幅提升人触电时的生命安全保障,以及电气火灾
- Python通关秘籍之基础教程(一)
Smile丶Life丶
Python通关指南:从零基础到高手之路python开发语言后端
引言在编程的世界里,Python就像一位温和而强大的导师,它以简洁优雅的语法和强大的功能吸引着无数初学者和专业人士。无论你是想开发网站、分析数据、构建人工智能,还是仅仅想学习编程思维,Python都是你的理想选择。Python的魅力在于它的易读性和广泛的应用场景。它的代码就像英语句子一样自然,即使是完全没有编程经验的人也能快速上手。同时,Python拥有庞大的生态系统,从Web开发(Django、
- 多模态大模型发展全景:从架构创新到应用突破
陈敬雷-充电了么-CEO兼CTO
python大模型多模态大模型AIGC机器学习深度学习DeepSeek
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】《GPT多模态大模型与AIAgent智能体》新出书籍配套视频【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录GPT多模态大模型系列四多模态大模型发展全景:从架构创新到应用突破更多技术内容总结GPT多模态大模型系列四多模态大模型
- 一文搞懂 Cursor 内部工作原理~
zz_jesse
介绍了Cursor,一个结合了AI技术的代码编辑器,它通过深度学习和语义索引的方式,提升了开发者的工作效率。Cursor通过与VSCode相似的界面和功能,以及自己的AI特性,实现了代码的智能化编辑和错误检查。译文从这开始~~你可能已经看到新闻:OpenAI正以高达30亿美元的价格收购Windsurf!与此同时,Cursor的母公司Anysphere也正在以90亿美元估值融资9亿美元!这对于代码生
- ollama v0.9.6版本发布详解:修复启动屏幕样式及新增工具名称参数支持
福大大架构师每日一题
文心一言vschatgptollama
作为近年来备受瞩目的开源对话式人工智能框架之一,ollama持续更新优化其产品,致力于为开发者带来更稳定、高效的使用体验。2025年7月8日,ollama发布了v0.9.6版本,这一版本在用户界面和API的可用性方面做出了重要改进,进一步增强了开发和集成的便捷性。本文将对ollamav0.9.6版本的更新内容进行全面解析,详细介绍新特性、修复的具体问题、应用示例及最佳实践,帮助开发者快速掌握和应用
- AI人工智能与机器学习的大数据融合应用
AI智能探索者
人工智能机器学习大数据ai
AI人工智能与机器学习的大数据融合应用关键词:AI人工智能、机器学习、大数据、融合应用、数据挖掘摘要:本文深入探讨了AI人工智能与机器学习在大数据融合应用方面的相关内容。首先介绍了研究的背景、目的、预期读者和文档结构,对核心术语进行了清晰定义。接着阐述了AI、机器学习和大数据的核心概念及相互联系,给出了形象的文本示意图和Mermaid流程图。详细讲解了核心算法原理,并通过Python源代码进行说明
- 深入解读 Qwen3 技术报告(一):引言
小爷毛毛(卓寿杰)
大模型AIGC深度学习基础/原理人工智能自然语言处理python语言模型深度学习
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展1.引言:迎接大型语言模型的新纪元我们正处在一个由人工智能(AI
- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- AI人工智能遇上TensorFlow:技术融合新趋势
AI大模型应用之禅
人工智能tensorflowpythonai
AI人工智能遇上TensorFlow:技术融合新趋势关键词:人工智能、TensorFlow、深度学习、神经网络、机器学习、技术融合、AI开发摘要:本文深入探讨了人工智能技术与TensorFlow框架的融合发展趋势。我们将从基础概念出发,详细分析TensorFlow在AI领域的核心优势,包括其架构设计、算法实现和实际应用。文章包含丰富的技术细节,如神经网络原理、TensorFlow核心算法实现、数学
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(上)
Allen_Lyb
数智化医院2025人工智能健康医疗算法
引言人工智能技术正以前所未有的速度改变着医疗保健领域,从辅助诊断到个性化治疗,AI应用的广度和深度不断拓展。在这一浪潮中,边缘人工智能(EdgeAI)作为一种新兴技术范式,正成为推动医疗AI创新的关键力量。边缘AI区别于传统的云计算模式,它将数据处理和AI模型部署在数据源头附近,实现快速响应和隐私保护。这种特性使其在医疗保健领域具有独特优势,特别是在实时监测、紧急响应和患者隐私保护等方面。边缘AI
- AI人工智能领域中AI作画的技术优势
AI大模型应用之禅
人工智能AI作画ai
AI人工智能领域中AI作画的技术优势关键词:AI作画、技术优势、人工智能、艺术创作、图像生成摘要:本文深入探讨了AI人工智能领域中AI作画的技术优势。从背景介绍出发,阐述了AI作画的起源与发展,明确了文章的目的、范围、预期读者以及文档结构。接着详细分析了AI作画的核心概念,包括其原理和架构,并通过Mermaid流程图进行直观展示。对核心算法原理进行了深入剖析,结合Python代码示例进行讲解。同时
- 快速掌握Python编程基础
张彦峰ZYF
python
干货分享,感谢您的阅读!备注:本博客将自己初步学习Python的总结进行分享,希望大家通过本博客可以在短时间内快速掌握Python的基本程序编码能力,如有错误请留言指正,谢谢!(持续更新)一、快速了解Python和环境准备(一)Python快速介绍Python是一种简洁、强大、易读的编程语言,广泛应用于Web开发、数据分析、人工智能、自动化运维等领域。它由GuidovanRossum在1991年设
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不