- 深入理解GPT底层原理--从n-gram到RNN到LSTM/GRU到Transformer/GPT的进化
网络安全研发随想
rnngptlstm
从简单的RNN到复杂的LSTM/GRU,再到引入注意力机制,研究者们一直在努力解决序列建模的核心问题。每一步的进展都为下一步的突破奠定了基础,最终孕育出了革命性的Transformer架构和GPT大模型。1.从n-gram到循环神经网络(RNN)的诞生1.1N-gram模型在深度学习兴起之前,处理序列数据主要依靠统计方法,如n-gram模型。N-gram是一种基于统计的语言模型,它的核心思想是:一
- 深度学习理论基础(七)Transformer编码器和解码器
小仇学长
深度学习深度学习transformer人工智能编码器解码器
学习目录:深度学习理论基础(一)Python及Torch基础篇深度学习理论基础(二)深度神经网络DNN深度学习理论基础(三)封装数据集及手写数字识别深度学习理论基础(四)Parser命令行参数模块深度学习理论基础(五)卷积神经网络CNN深度学习理论基础(六)Transformer多头自注意力机制深度学习理论基础(七)Transformer编码器和解码器本文目录学习目录:前述:Transformer
- Transformer架构原理详解:编码器(Encoder)和解码器(Decoder)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,编码器,解码器,自注意力机制,多头注意力,位置编码,序列到序列,自然语言处理1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展,其中Transformer架构扮演着至关重要的角色。自2017年谷歌发布了基于Transformer的机器翻译模型BERT以来,Transformer及其变体在各种NLP任务上取得了突破性的成果,例如文本分类、问答系统、文本摘要
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 深度学习中超参数
fengbingchun
DeepLearninghyperparameter
深度学习中的超参数(hyperparameters)是决定网络结构的变量(例如隐藏层数量)和决定网络训练方式的变量(例如学习率)。超参数的选择会显著影响训练模型所需的时间,也会影响模型的性能。超参数是在训练开始之前设置的,而不是从数据中学习的参数。超参数是模型训练期间无法学习的参数,需要事先设置。在深度学习中,模型由模型参数(如神经网络的权重和偏置)定义或表示。然而,训练模型的过程涉及选择最佳超参
- 基于MATLAB机器学习、深度学习实践技术应用
梦想的初衷~
机器学习人工智能matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。原文链接https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=224
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- 深度学习学习笔记(第30周)
qq_51339898
深度学习人工智能
一、摘要本周报的目的在于汇报第30周的学习成果,本周主要聚焦于基于深度学习的图像分割领域的常用模型U-net。 U-net是最常用、最简单的一种分割模型,在2015年被提出。UNet网络是一种用于图像分割的卷积神经网络,其特点是采用了U型网络结构,因此称为UNet。UNet算法的关键创新是在解码器中引入了跳跃连接(SkipConnections),即将编码器中的特征图与解码器中对应的特征图进行连接
- 深入解析如何进行TensorFlow框架下的算子开发与适配插件开发:基于昇腾AI的完整流程
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能tensorflowpython
深入解析如何进行TensorFlow框架下的算子开发与适配插件开发:基于昇腾AI的完整流程在人工智能领域中,算子(Operator)作为深度学习模型的基础执行单元,决定了整个模型的计算性能和结果准确性。随着硬件平台的多样化,如何将第三方深度学习框架中的算子适配到特定的硬件平台变得至关重要。本文将深入探讨如何在TensorFlow框架下开发适配昇腾AI处理器的算子插件,通过解析算子属性映射、数据排布
- 深入解析框架适配开发:基于CANN平台的自定义算子开发与第三方框架适配全流程详解
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能
深入解析框架适配开发:基于CANN平台的自定义算子开发与第三方框架适配全流程详解随着深度学习的发展,不同的深度学习框架如TensorFlow、PyTorch、ONNX等在AI开发者社区中占据了重要地位。然而,针对某些硬件平台(如华为昇腾AI处理器),算子库中的算子并非都已经适配了所有主流框架。为了解决这一问题,框架适配开发应运而生,它允许开发者将已存在于算子库中的算子适配到其他未支持的第三方框架上
- 深入解析CANN算子开发:TBE与AI CPU算子类型及其开发方法全指南
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能
深入解析CANN算子开发:TBE与AICPU算子类型及其开发方法全指南在现代AI计算领域中,高效的算子开发对于优化深度学习模型的推理与训练至关重要。CANN(ComputeArchitectureforNeuralNetworks)作为华为AscendAI处理器的开发平台,提供了两种类型的算子开发支持:TBE算子和AICPU算子。每种算子类型针对不同的计算任务和硬件架构,开发者需要根据具体场景选择
- 深度学习-90-大型语言模型LLM之基于LM Studio本地化部署运行自己的大模型
皮皮冰燃
深度学习深度学习语言模型人工智能
文章目录1LMStudio1.1LMStudio的优点1.2LMStudio的安装1.3配置国内下载模型2LMStudio的应用2.1查找/下载模型2.2模型名称的含义2.3查看已经下载的模型2.4使用聊天3配置服务端3.1启动服务3.2支持的接口3.2.1列出当前加载的模型/v1/models3.2.2聊天补全/v1/chat/completions3.2.3文本补全/v1/completion
- Python从0到100(八十三):神经网络-使用残差网络RESNET识别手写数字
是Dream呀
python神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 知识图谱中的word2vec 技术是做什么的?
kcarly
知识图谱入门知识图谱word2vec人工智能
Word2Vec是一种将单词转换为向量表示的技术,由Google在2013年提出。这项技术的核心思想是通过大规模文本数据训练神经网络模型,从而将单词映射到低维稠密的向量空间中。这些向量能够捕捉到单词之间的语义和语法关系,使得相似或相关的单词在向量空间中彼此靠近。Word2Vec的基本原理Word2Vec主要包括两种训练模型:CBOW(ContinuousBagofWords)和Skip-gram。
- 中科曙光C/C++研发工程师二面
TrustZone_
ARM/Linux嵌入式面试c语言c++开发语言
自我介绍;针对项目:CNN模型、损失函数、评价指标、改进方向、计算加速;CNN模型CNN,即卷积神经网络,是一种专门用于处理具有类似网格结构数据的深度学习模型。它通过卷积层和池化层提取图像特征,并通过全连接层进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域取得了巨大成功。具体来说,CNN的模型结构包括输入层、卷积层、激活函数、池化层、全连接层和输出层。输入层接收图像数据,并将其转换为
- 改进yolov8工业缺陷检测+swin+transformer
qq1309399183
计算机视觉实战项目集合YOLOtransformer深度学习人工智能计算机视觉机器学习神经网络
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 改进yolov8缺陷检测+swin+transformer
QQ_1309399183
计算机视觉实战项目集锦YOLOtransformer深度学习人工智能计算机视觉opencv机器学习
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 【Python】成功解决ValueError: zero-size array to reduction operation minimum which has no identity
高斯小哥
BUG解决方案合集python新手入门学习debug
【Python】成功解决ValueError:zero-sizearraytoreductionoperationminimumwhichhasnoidentity个人主页:高斯小哥高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程希望得到您的订阅和支持~创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、
- 开源AI图像工具—Stable Diffusion
蚂蚁在飞-
人工智能stablediffusion
StableDiffusion是一种基于深度学习的生成式模型,用于图像生成、图像修复和风格转换等任务。它是由StabilityAI和CompVis团队联合开发的。StableDiffusion在生成高质量图像方面表现出色,并且是开源的,可以自由使用和扩展。StableDiffusion的核心技术1.扩散模型(DiffusionModels):•基于概率生成模型。•从噪声中逐步反向生成清晰的图像。•
- 机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
wyc9999ww
机器学习scikit-learnjupyter人工智能python
对于初学者来说,scikit-learn是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。通过使用scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。所以scikit-learn能轻松实现从数据预处理到模型训练和评估的完整流程。此外在推荐一个适合初学者的深度学习平台工具googleco
- 【深度学习】CrossEntropyLoss需要手动softmax吗?
zz的学习笔记本
深度学习深度学习人工智能
【深度学习】CrossEntropyLoss需要手动softmax吗?问题:CrossEntropyLoss需要手动softmax吗?答案:不需要官方文档代码解释问题:CrossEntropyLoss需要手动softmax吗?之前用pytorch实现自己的网络时,使用CrossEntropyLoss的时候将网路输出经softmax激活层后再计算CrossEntropyLoss。答案:不需要调用了损
- 有趣的python代码实例_Python之路:200个Python有趣的小例子一网打尽
weixin_39845406
有趣的python代码实例
概述博主最近在学习python,看完了一整套学习视频,然后呃呃呃,还是用不太流畅。碰巧在全球最大的同性交友论坛GayHub(呸!是开源代码托管平台Github)上面发现了一个项目,该项目列举了200多个Python小例子,Python基础、Python坑点、Python字符串和正则、Python绘图、Python日期和文件、Web开发、数据科学、机器学习、深度学习、TensorFlow、Pytor
- 迁移学习与RBF神经网络
fanxbl957
人工智能理论与实践迁移学习神经网络人工智能
迁移学习与RBF神经网络一、引言在机器学习和深度学习领域,迁移学习和神经网络都是备受关注的重要技术。迁移学习旨在将从一个或多个源任务中学习到的知识应用到目标任务中,以加快目标任务的学习过程,提高学习效果,尤其在数据稀缺或训练资源有限的情况下展现出显著优势。而RBF(径向基函数)神经网络作为一种经典的神经网络结构,以其独特的函数逼近能力和良好的局部逼近特性,在众多领域取得了出色的性能表现。将迁移学习
- 智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割1.堆优化算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用堆优化算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.堆优化算法堆优化算法原理请参考:https://blog.csdn.net/u0118
- AIGC视频生成国产之光:ByteDance的PixelDance模型
好评笔记
AIGC-视频补档AIGC计算机视觉人工智能深度学习机器学习论文阅读面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言输入训练和推理时的数据处理总结相关工作视频生成长视频生成方法模型架构
- 【锂电池寿命】基于BP锂电池寿命预测(matlab)
大橘科研工作室
毕设锂电池方向(MATLAB版)matlab
【锂电池寿命】基于BP锂电池寿命预测(matlab)文章目录【锂电池寿命】基于BP锂电池寿命预测(matlab)一、引言1.1、研究背景1.2、研究意义二、文献综述2.1、锂电池寿命预测研究现状2.2、常见预测方法对比2.3、BP神经网络在寿命预测中的应用三、研究方法与数据准备3.1、BP神经网络模型设计3.2、数据来源与预处理3.3、特征提取与选择四、模型训练与验证4.1、训练过程4.2、模型验
- PyTorch 基础数据集:从理论到实践的深度学习基石
那年一路北
Pytorch理论+实践深度学习pytorch人工智能
一、引言深度学习作为当今人工智能领域的核心技术,在图像识别、自然语言处理、语音识别等众多领域取得了令人瞩目的成果。而在深度学习的体系中,数据扮演着举足轻重的角色,它是模型训练的基础,如同建筑的基石,决定了模型的性能和泛化能力。PyTorch作为当下最流行的深度学习框架之一,为开发者提供了丰富且强大的工具来处理数据集。本文将深入探讨PyTorch中的基础数据集,从深度学习中数据的重要性出发,详细介绍
- BP神经网络概述及其预测的Python和MATLAB实现
追蜻蜓追累了
神经网络回归算法深度学习机器学习启发式算法lstmgru
##一、背景###1.1人工神经网络的起源人工神经网络(ArtificialNeuralNetwork,ANN)受生物神经网络的启发,模拟大脑神经元之间的连接和信息处理方式。尽管早在1943年就有学者如McCulloch和Pitts提出了数学模型,但人工神经网络真正被广泛研究是在20世纪80年代。###1.2BP神经网络的兴起反向传播(BackPropagation,简称BP)算法是20世纪80年
- 【深度学习】Pytorch:导入导出模型参数
T0uken
深度学习pytorch人工智能
PyTorch是深度学习领域中广泛使用的框架,熟练掌握其模型参数的管理对于模型训练、推理以及部署非常重要。本文将全面讲解PyTorch中关于模型参数的操作,包括如何导出、导入以及如何下载模型参数。什么是模型参数模型参数是指深度学习模型中需要通过训练来优化的变量,如神经网络中的权重和偏置。这些参数存储在PyTorch的torch.nn.Module对象中,通过以下方式访问:importtorchim
- matlab程序代编程写做代码图像处理BP神经网络机器深度学习python
matlabgoodboy
深度学习matlab图像处理
1.安装必要的库首先,确保你已经安装了必要的Python库。如果没有安装,请运行以下命令:bash复制代码pipinstallnumpymatplotlibtensorflowopencv-python2.图像预处理我们将使用OpenCV来加载和预处理图像数据。假设你有一个图像数据集,每个类别的图像存放在单独的文件夹中。python复制代码importosimportcv2importnumpya
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&