神经网络和人工智能原理,人工神经网络基本原理

神经网络的基本原理是什么?

神经网络的基本原理是:每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化。

基本上,神经网络是由一层一层的不同的计算单位连接起来的。我们把计算单位称为神经元,这些网络可以把数据处理分类,就是我们要的输出。

神经网络常见的工具:以上内容参考:在众多的神经网络工具中,NeuroSolutions始终处于业界领先位置。它是一个可用于windowsXP/7高度图形化的神经网络开发工具。

其将模块化,基于图标的网络设计界面,先进的学习程序和遗传优化进行了结合。该款可用于研究和解决现实世界的复杂问题的神经网络设计工具在使用上几乎无限制。以上内容参考:百度百科-神经网络。

谷歌人工智能写作项目:神经网络伪原创

什么是人工神经网络?

一.一些基本常识和原理[什么叫神经网络?]人的思维有逻辑性和直观性两种不同的基本方式写作猫

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

[人工神经网络的工作原理]人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。

这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。

一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

=================================================关于一个神经网络模拟程序的下载人工神经网络实验系统(BP网络)V1.0Beta作者:沈琦作者关于此程序的说明:从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值0.515974。

而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果P*Out1:0.520051看到了吗?"大脑"识别出了4和11是属于第二类的!

怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!=================================================人工神经网络论坛(旧版,枫舞推荐)国际神经网络学会(INNS)(英文)欧洲神经网络学会(ENNS)(英文)亚太神经网络学会(APNNA)(英文)日本神经网络学会(JNNS)(日文)国际电气工程师协会神经网络分会研学论坛神经网络;sty=1&age=0人工智能研究者俱乐部2nsoft人工神经网络中文站=================================================推荐部分书籍:人工神经网络技术入门讲稿(PDF)神经网络FAQ(英文)数字神经网络系统(电子图书)神经网络导论(英文)===============================================一份很有参考价值的讲座是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.。

请介绍一下人工神经网络,和应用 5

一.一些基本常识和原理[什么叫神经网络?]人的思维有逻辑性和直观性两种不同的基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

[人工神经网络的工作原理]人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。

这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。

一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

=================================================关于一个神经网络模拟程序的下载人工神经网络实验系统(BP网络)V1.0Beta作者:沈琦作者关于此程序的说明:从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值0.515974。

而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果P*Out1:0.520051看到了吗?"大脑"识别出了4和11是属于第二类的!

怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!=================================================人工神经网络论坛(旧版,枫舞推荐)国际神经网络学会(INNS)(英文)欧洲神经网络学会(ENNS)(英文)亚太神经网络学会(APNNA)(英文)日本神经网络学会(JNNS)(日文)国际电气工程师协会神经网络分会研学论坛神经网络;sty=1&age=0人工智能研究者俱乐部2nsoft人工神经网络中文站=================================================推荐部分书籍:人工神经网络技术入门讲稿(PDF)神经网络FAQ(英文)数字神经网络系统(电子图书)神经网络导论(英文)===============================================一份很有参考价值的讲座是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.=========================================================已经努力的在给你提供条件资源哦~~。

人工神经网络,人工神经网络是什么意思

一、人工神经网络的概念人工神经网络(ArtificialNeuralNetwork,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。

该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。

它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。

每个节点代表一种特定的输出函数,称为激活函数(activationfunction)。

每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。

而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。

人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。

另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。

输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。

神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。

二、人工神经网络的发展神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。

1.第一阶段----启蒙时期(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。

1943年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。

在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。

(2)、Hebb规则:1949年,心理学家赫布(Hebb)出版了《TheOrganizationofBehavior》(行为组织学),他在书中提出了突触连接强度可变的假设。

这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常著名的Hebb规则。

这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。

(3)、感知器模型:1957年,罗森勃拉特(Rosenblatt)以M-P模型为基础,提出了感知器(Perceptron)模型。

感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。

这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。

Rosenblatt证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。

Rosenblatt的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。

(4)、ADALINE网络模型:1959年,美国著名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptivelinearelement,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。

ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。

2.第二阶段----低潮时期人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。

这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。

(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizingfeaturemap)。

后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。

它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。

这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。

(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了著名的自适应共振理论ART(AdaptiveResonanceTheory),其学习过程具有自组织和自稳定的特征。

3.第三阶段----复兴时期(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。

在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。

1984年,Hopfield又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。

1985年,Hopfield和Tank利用Hopfield神经网络解决了著名的旅行推销商问题(TravellingSalesmanProblem)。Hopfield神经网络是一组非线性微分方程。

Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。

因为Hopfield神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。

(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。

1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。

Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann机模型。

(3)、BP神经网络模型:1986年,儒默哈特(melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(ErrorBack-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。

(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《ParallelDistributedProcessing:ExplorationintheMicrostructuresofCognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。

可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。

(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。

Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。

(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。

(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasisfunction,RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。

(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。

(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。

通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。

(11)、90年代初,Vapnik等提出了支持向量机(Supportvectormachines,SVM)和VC(Vapnik-Chervonenkis)维数的概念。

经过多年的发展,已有上百种的神经网络模型被提出。

AI是否可以被精神分析?人工智能运行的基础原理到底是什么?

AI不可以被精神分析,人工智能的工作原理是,计算机使用传感器(或人工输入),将收集有关一个场景的事实。计算机将把这些信息与已经存储的信息进行比较,以确定它的含义。

计算机将根据它所收集的信息计算出各种可能的行动,然后预测哪种行动是最好的。计算机只能解决程序允许其解决的问题,不具备一般意义上的分析能力。精神分析作为一种心理治疗方法的有效性是有争议的。

关于人工智能也有很多争议。把这些堆在自己身上,你可能会发现负面的消极因素。你可以先试着找一个拉康精神分析的AI。同时人工智能也可以被不明真相的人分析为人类。

如果人工智能在这个过程中让很大比例的人认为它是人类,你就可以认为人工智能已经通过了图灵测试。你可以看看“谷歌工程师声称AI已经有意识”的这个故事,它在2022年曾热过一阵子。

人工智能的演进是有一定的逻辑关系的,从认知开始,通过逻辑训练和深度学习,演变成神经网络的自我学习过程,这个过程非常漫长,从PC的诞生到现在的移动互联网。

有了半个世纪的时间,有了建模的算法,基于通信技术的发展,我们进入了第四代通信和半导体的GPU时代,这种现象才得以高速发展,我们知道百度发布了1版本。2019年将实现0次无人驾驶。

人工智能是研究人类智能行动的规律,构建具有某种程度智能的人工系统,研究如何使计算机完成以前需要人类智能的任务,即研究如何利用计算机硬件和软件来模拟人类智能行为的基本理论、方法和技术。

人工智能是用机器模拟人思考和判断的过程,一般人工智能包含两个部分:算法和训练数据,通过算法和训练数据,得到一套思维和判断方式,可以作用于现场数据的判决,这是人工智能的一般内容。

人工神经网络的定义,详细说明

人工神经网络(ArtificialNeuralNetworks,ANN),一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。

(引自《环球科学》2007年第一期《神经语言:老鼠胡须下的秘密》)概念由大量处理单元互联组成的非线性、自适应信息处理系统。

它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:(1)非线性非线性关系是自然界的普遍特性。

大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。

联想记忆是非局限性的典型例子。(3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。

经常采用迭代过程描写动力系统的演化过程。(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。

非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。

网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。

神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。

人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。

历史沿革1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。

他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。

60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。

M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。

他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。

在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。

1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。

1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。

1986年进行认知微观结构地研究,提出了并行分布处理的理论。

人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。

在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。基本内容人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。

目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。

根据连接的拓扑结构,神经网络模型可以分为:(1)前向网络网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。

这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。

Hopfield网络、波耳兹曼机均属于这种类型。学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。

由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。

在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。

有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。

在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。

当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。

此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。

自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。

研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。

为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。

一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。

“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。

混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。

混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。

混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

一个奇异吸引子有如下一些特征:(1)奇异吸引子是一个吸引子,但它既不是不动点,也不是周期解;(2)奇异吸引子是不可分割的,即不能分为两个以及两个以上的吸引子;(3)它对初始值十分敏感,不同的初始值会导致极不相同的行为。

发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

人工智能的原理是什么

人工智能的原理,简单的形容就是:人工智能=数学计算。机器的智能程度,取决于“算法”。最初,人们发现用电路的开和关,可以表示1和0。

那么很多个电路组织在一起,不同的排列变化,就可以表示很多的事情,比如颜色、形状、字母。再加上逻辑元件(三极管),就形成了“输入(按开关按钮)——计算(电流通过线路)——输出(灯亮了)”这种模式。

想象家里的双控开关。为了实现更复杂的计算,最终变成了,“大规模集成电路”——芯片。电路逻辑层层嵌套,层层封装之后,我们改变电流状态的方法,就变成了“编写程序语言”。程序员就是干这个的。

程序员让电脑怎么执行,它就怎么执行,整个流程都是被程序固定死的。所以,要让电脑执行某项任务,程序员必须首先完全弄清楚任务的流程。就拿联控电梯举例:别小看这电梯,也挺“智能”呢。

考虑一下它需要做哪些判断:上下方向、是否满员、高峰时段、停止时间是否足够、单双楼层等等,需要提前想好所有的可能性,否则就要出bug。某种程度上说,是程序员控制了这个世界。

可总是这样事必躬亲,程序员太累了,你看他们加班都熬红了眼睛。于是就想:能不能让电脑自己学习,遇到问题自己解决呢?而我们只需要告诉它一套学习方法。

大家还记得1997年的时候,IBM用专门设计的计算机,下赢了国际象棋冠军。

其实,它的办法很笨——暴力计算,术语叫“穷举”(实际上,为了节省算力,IBM人工替它修剪去了很多不必要的计算,比如那些明显的蠢棋,并针对卡斯帕罗夫的风格做了优化)。

计算机把每一步棋的每一种下法全部算清楚,然后对比人类的比赛棋谱,找出最优解。一句话:大力出奇迹!但是到了围棋这里,没法再这样穷举了。力量再大,终有极限。

围棋的可能性走法,远超宇宙中全部原子之和(已知),即使用目前最牛逼的超算,也要算几万年。在量子计算机成熟之前,电子计算机几无可能。

所以,程序员给阿尔法狗多加了一层算法:A、先计算:哪里需要计算,哪里需要忽略。B、然后,有针对性地计算。——本质上,还是计算。哪有什么“感知”!在A步,它该如何判断“哪里需要计算”呢?

这就是“人工智能”的核心问题了:“学习”的过程。仔细想一下,人类是怎样学习的?人类的所有认知,都来源于对观察到的现象进行总结,并根据总结的规律,预测未来。

当你见过一只四条腿、短毛、个子中等、嘴巴长、汪汪叫的动物,名之为狗,你就会把以后见到的所有类似物体,归为狗类。不过,机器的学习方式,和人类有着质的不同:人通过观察少数特征,就能推及多数未知。

举一隅而反三隅。机器必须观察好多好多条狗,才能知道跑来的这条,是不是狗。这么笨的机器,能指望它来统治人类吗。它就是仗着算力蛮干而已!力气活。具体来讲,它“学习”的算法,术语叫“神经网络”(比较唬人)。

(特征提取器,总结对象的特征,然后把特征放进一个池子里整合,全连接神经网络输出最终结论)它需要两个前提条件:1、吃进大量的数据来试错,逐渐调整自己的准确度;2、神经网络层数越多,计算越准确(有极限),需要的算力也越大。

所以,神经网络这种方法,虽然多年前就有了(那时还叫做“感知机”)。但是受限于数据量和计算力,没有发展起来。神经网络听起来比感知机不知道高端到哪里去了!

这再次告诉我们起一个好听的名字对于研(zhuang)究(bi)有多重要!现在,这两个条件都已具备——大数据和云计算。谁拥有数据,谁才有可能做AI。

目前AI常见的应用领域:图像识别(安防识别、指纹、美颜、图片搜索、医疗图像诊断),用的是“卷积神经网络(CNN)”,主要提取空间维度的特征,来识别图像。

自然语言处理(人机对话、翻译),用的是”循环神经网络(RNN)“,主要提取时间维度的特征。因为说话是有前后顺序的,单词出现的时间决定了语义。神经网络算法的设计水平,决定了它对现实的刻画能力。

顶级大牛吴恩达就曾经设计过高达100多层的卷积层(层数过多容易出现过拟合问题)。当我们深入理解了计算的涵义:有明确的数学规律。那么,这个世界是是有量子(随机)特征的,就决定了计算机的理论局限性。

——事实上,计算机连真正的随机数都产生不了。——机器仍然是笨笨的。更多神佑深度的人工智能知识,想要了解,可以私信询问。

人工神经网络原理的内容简介

为了满足读者应用人工神经网络解决实际问题的需要,书中还介绍了人工神经网络应用开发设计的全过程,并在附录中给出了BP神经网络实现预测、Hop6eld神经网络实现图像自联想记忆、模拟退火算法实现TSP和ARTI神经网络的源程序,供读者参考。

作为扩充知识,书中也简单介绍了人工神经网络的实现,以及人工神经网络技术与传统的基于规则的专家系统和模糊系统的融合。

《人工神经网络原理》既可作为计算机科学与技术、电子、通信与自动控制等相关专业的研究生和高年级本科生的参考书,也可作为相关专业领域的科研人员和工程技术人员的学习参考书。

如何通过人工神经网络实现图像识别

人工神经网络(ArtificialNeuralNetworks)(简称ANN)系统从20世纪40年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。

尤其是基于误差反向传播(ErrorBackPropagation)算法的多层前馈网络(Multiple-LayerFeedforwardNetwork)(简称BP网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。

目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。

这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。

一、BP神经网络BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。一个典型的BP网络采用的是梯度下降算法,也就是Widrow-Hoff算法所规定的。

backpropagation就是指的为非线性多层网络计算梯度的方法。一个典型的BP网络结构如图所示。我们将它用向量图表示如下图所示。

其中:对于第k个模式对,输出层单元的j的加权输入为该单元的实际输出为而隐含层单元i的加权输入为该单元的实际输出为函数f为可微分递减函数其算法描述如下:(1)初始化网络及学习参数,如设置网络初始权矩阵、学习因子等。

(2)提供训练模式,训练网络,直到满足学习要求。(3)前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2)。

(4)后向传播过程:a.计算同一层单元的误差;b.修正权值和阈值;c.返回(2)二、BP网络隐层个数的选择对于含有一个隐层的三层BP网络可以实现输入到输出的任何非线性映射。

增加网络隐层数可以降低误差,提高精度,但同时也使网络复杂化,增加网络的训练时间。误差精度的提高也可以通过增加隐层结点数来实现。一般情况下,应优先考虑增加隐含层的结点数。

三、隐含层神经元个数的选择当用神经网络实现网络映射时,隐含层神经元个数直接影响着神经网络的学习能力和归纳能力。

隐含层神经元数目较少时,网络每次学习的时间较短,但有可能因为学习不足导致网络无法记住全部学习内容;隐含层神经元数目较大时,学习能力增强,网络每次学习的时间较长,网络的存储容量随之变大,导致网络对未知输入的归纳能力下降,因为对隐含层神经元个数的选择尚无理论上的指导,一般凭经验确定。

四、神经网络图像识别系统人工神经网络方法实现模式识别,可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变,神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。

神经网络的图像识别系统是神经网络模式识别系统的一种,原理是一致的。一般神经网络图像识别系统由预处理,特征提取和神经网络分类器组成。预处理就是将原始数据中的无用信息删除,平滑,二值化和进行幅度归一化等。

神经网络图像识别系统中的特征提取部分不一定存在,这样就分为两大类:①有特征提取部分的:这一类系统实际上是传统方法与神经网络方法技术的结合,这种方法可以充分利用人的经验来获取模式特征以及神经网络分类能力来识别目标图像。

特征提取必须能反应整个图像的特征。但它的抗干扰能力不如第2类。

②无特征提取部分的:省去特征抽取,整副图像直接作为神经网络的输入,这种方式下,系统的神经网络结构的复杂度大大增加了,输入模式维数的增加导致了网络规模的庞大。

此外,神经网络结构需要完全自己消除模式变形的影响。但是网络的抗干扰性能好,识别率高。当BP网用于分类时,首先要选择各类的样本进行训练,每类样本的个数要近似相等。

其原因在于一方面防止训练后网络对样本多的类别响应过于敏感,而对样本数少的类别不敏感。另一方面可以大幅度提高训练速度,避免网络陷入局部最小点。

由于BP网络不具有不变识别的能力,所以要使网络对模式的平移、旋转、伸缩具有不变性,要尽可能选择各种可能情况的样本。

例如要选择不同姿态、不同方位、不同角度、不同背景等有代表性的样本,这样可以保证网络有较高的识别率。

构造神经网络分类器首先要选择适当的网络结构:神经网络分类器的输入就是图像的特征向量;神经网络分类器的输出节点应该是类别数。隐层数要选好,每层神经元数要合适,目前有很多采用一层隐层的网络结构。

然后要选择适当的学习算法,这样才会有很好的识别效果。

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。

神经网络是按整个特征向量的整体来记忆图像的,只要大多数特征符合曾学习过的样本就可识别为同一类别,所以当样本存在较大噪声时神经网络分类器仍可正确识别。

在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。五、仿真实验1、实验对象本实验用MATLAB完成了对神经网络的训练和图像识别模拟。

从实验数据库中选择0~9这十个数字的BMP格式的目标图像。图像大小为16×8像素,每个目标图像分别加10%、20%、30%、40%、50%大小的随机噪声,共产生60个图像样本。

将样本分为两个部分,一部分用于训练,另一部分用于测试。实验中用于训练的样本为40个,用于测试的样本为20个。随机噪声调用函数randn(m,n)产生。

2、网络结构本试验采用三层的BP网络,输入层神经元个数等于样本图像的象素个数16×8个。隐含层选24个神经元,这是在试验中试出的较理想的隐层结点数。

输出层神经元个数就是要识别的模式数目,此例中有10个模式,所以输出层神经元选择10个,10个神经元与10个模式一一对应。

3、基于MATLAB语言的网络训练与仿真建立并初始化网络% ================S1 = 24;% 隐层神经元数目S1 选为24[R,Q] = size(numdata);[S2,Q] = size(targets);F = numdata;P=double(F);net = newff(minmax(P),[S1 S2],{'logsig''logsig'},'traingda','learngdm')这里numdata为训练样本矩阵,大小为128×40,targets为对应的目标输出矩阵,大小为10×40。

newff(PR,[S1S2…SN],{TF1TF2…TFN},BTF,BLF,PF)为MATLAB函数库中建立一个N层前向BP网络的函数,函数的自变量PR表示网络输入矢量取值范围的矩阵[Pminmax];S1~SN为各层神经元的个数;TF1~TFN用于指定各层神经元的传递函数;BTF用于指定网络的训练函数;BLF用于指定权值和阀值的学习函数;PF用于指定网络的性能函数,缺省值为‘mse’。

设置训练参数net.performFcn = 'sse'; %平方和误差性能函数 = 0.1; %平方和误差目标 = 20; %进程显示频率net.trainParam.epochs = 5000;%最大训练步数 = 0.95; %动量常数网络训练net=init(net);%初始化网络[net,tr] = train(net,P,T);%网络训练对训练好的网络进行仿真D=sim(net,P);A = sim(net,B);B为测试样本向量集,128×20的点阵。

D为网络对训练样本的识别结果,A为测试样本的网络识别结果。实验结果表明:网络对训练样本和对测试样本的识别率均为100%。如图为64579五个数字添加50%随机噪声后网络的识别结果。

六、总结从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。

 

你可能感兴趣的:(人工智能,神经网络,深度学习)