tokenizer就是分词器; 只不过在bert里和我们理解的中文分词不太一样,主要不是分词方法的问题,bert里基本都是最大匹配方法。
最大的不同在于“词”的理解和定义。 比如:中文基本是字为单位。
英文则是subword的概念,例如将"unwanted"分解成[“un”, “##want”, “##ed”] 请仔细理解这个做法的优点。
这是tokenizer的一个要义。
主要的类是BasicTokenizer,做一些基础的大小写、unicode转换、标点符号分割、小写转换、中文字符分割、去除重音符号等操作,最后返回的是关于词的数组(中文是字的数组)
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = convert_to_unicode(text)
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
BasicTokenzer是预处理。
另外一个则是关键wordpiecetokenizer,就是基于vocab切词。
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text = convert_to_unicode(text)
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
#找个单词,找不到end向前滑动;还是看代码实在!!!
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
这个基本上就是利用basic和wordpiece来切分。用于bert训练的预处理。基本就一个tokenize方法。不会有encode_plus等方法。
这个则是bert的base类,定义了很多方法(convert_ids_to_tokens)等。 后续的BertTokenzier,GPT2Tokenizer都继承自pretrainTOkenizer,下面的关系图可以看到这个全貌。
from transformers.tokenization_bert import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
print("词典大小:",tokenizer.vocab_size)
text = "the game has gone!unaffable I have a new GPU!"
tokens = tokenizer.tokenize(text)
print("英文分词来一个:",tokens)
text = "我爱北京天安门,吢吣"
tokens = tokenizer.tokenize(text)
print("中文分词来一个:",tokens)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
print("id-token转换:",input_ids)
sen_code = tokenizer.encode_plus("i like you much", "but not him")
print("多句子encode:",sen_code)
print("decode:",tokenizer.decode(sen_code['input_ids']))
输出结果:
词典大小: 30522
英文分词来一个: ['the', 'game', 'has', 'gone', '!', 'una', '##ffa', '##ble', 'i', 'have', 'a', 'new', 'gp', '##u', '!']
中文分词来一个: ['我', '[UNK]', '北', '京', '天', '安', '[UNK]', ',', '[UNK]', '[UNK]']
id-token转换: [1855, 100, 1781, 1755, 1811, 1820, 100, 1989, 100, 100]
多句子encode: {'input_ids': [101, 1045, 2066, 2017, 2172, 102, 2021, 2025, 2032, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
decode: [CLS] i like you much [SEP] but not him [SEP]
看代码或者实际操练一遍,再来看理论知识更好。实操是关键,是思想的体现。
当然也可以单独实验bertwordpiecetokenzer
from transformers.tokenization_bert import BertWordPieceTokenizer
# initialize tokenizer
tokenizer = BertWordPieceTokenizer(
vocab_file= "vocab.txt",
unk_token = "[UNK]",
sep_token = "[SEP]",
cls_token = "[CLS]",
pad_token = "[PAD]",
mask_token = "[MASK]",
clean_text = True,
handle_chinese_chars = True,
strip_accents= True,
lowercase = True,
wordpieces_prefix = "##"
)
# sample sentence
sentence = "Language is a thing of beauty. But mastering a new language from scratch is quite a daunting prospect."
# tokenize the sample sentence
encoded_output = tokenizer.encode(sentence)
print(encoded_output)
print(encoded_output.tokens)
其实就是提取vacab的过程。
BPE算法也比较容易理解:不断的选择most common的加入到词典,为什么? 因为覆盖的语料量比较大。
举个bpe的例子。
原始统计词:
('hug', 10), ('pug', 5), ('pun', 12), ('bun', 4), ('hugs', 5)
开始统计char:
('h' 'u' 'g', 10), ('p' 'u' 'g', 5), ('p' 'u' 'n', 12), ('b' 'u' 'n', 4), ('h' 'u' 'g' 's', 5)
合并最大的ug:
('h' 'ug', 10), ('p' 'ug', 5), ('p' 'u' 'n', 12), ('b' 'u' 'n', 4), ('h' 'ug' 's', 5)
合并最大频度的hug:
['b', 'g', 'h', 'n', 'p', 's', 'u', 'ug', 'un', 'hug']
最后原始统计词的表示转换为:
('hug', 10), ('p' 'ug', 5), ('p' 'un', 12), ('b' 'un', 4), ('hug' 's', 5)
def train_cn_tokenizer():
# ! pip install tokenizers
from pathlib import Path
from tokenizers import ByteLevelBPETokenizer
paths = [str(x) for x in Path("zho-cn_web_2015_10K").glob("**/*.txt")]
# Initialize a tokenizer
tokenizer = ByteLevelBPETokenizer()
# Customize training
tokenizer.train(files=paths, vocab_size=52_000, min_frequency=3, special_tokens=[
"",
"" ,
"",
"" ,
"" ,
])
# Save files to disk
tokenizer.save( ".","zh-tokenizer-train")
我强烈建议,根据自己的业务定制自己的vocab,当然要配套模型。
最后的结果
{"":0,"" :1,"":2,"" :3,"" :4,"!":5,"\"":6,"#":7,"$":8,"%":9,"&":10,"'":11,"(":12,")":13,"*":14,"+":15,",":16,"-":17,".":18,"/":19,"0":20,"1":21,"2":22,"3":23,"4":24,"5":25,"6":26,"7":27,"8":28,"9":29,":":30,";":31,"<":32,"=":33,">":34,"?":35,"@":36,"A":37,"B":38,"C":39,"D":40,"E":41,"F":42,"G":43,"H":44,"I":45,"J":46,"K":47,"L":48,"M":49,"N":50,"O":51,"P":52,"Q":53,"R":54,"S":55,"T":56,"U":57,"V":58,"W":59,"X":60,"Y":61,"Z":62,"[":63,"\\":64,"]":65,"^":66,"_":67,"`":68,"a":69,"b":70,"c":71,"d":72,"e":73,"f":74,"g":75,"h":76,"i":77,"j":78,"k":79,"l":80,"m":81,"n":82,"o":83,"p":84,"q":85,"r":86,"s":87,"t":88,"u":89,"v":90,"w":91,"x":92,"y":93,"z":94,"{":95,"|":96,"}":97,"~":98,"¡":99,"¢":100,"£":101,"¤":102,"¥":103,"¦":104,"§":105,"¨":106,"©":107,"ª":108,"«":109,"¬":110,"®":111,"¯":112,"°":113,"±":114,"²":115,"³":116,"´":117,"µ":118,"¶":119,"·":120,"¸":121,"¹":122,"º":123,"»":124,"¼":125,"½":126,"¾":127,"¿":128,"À":129,"Á":130,"Â":131,"Ã":132,"Ä":133,"Å":134,"Æ":135,
...