bert第三篇:tokenizer

文章目录

    • tokenizer基本含义
    • bert里涉及的tokenizer
      • BasicTokenzer
      • wordpiecetokenizer
      • FullTokenzier
      • PretrainTokenizer
    • 关系图
    • 实操
    • 如何训练
    • 训练自己中文的tokenizer
    • 总结
    • 引用

tokenizer基本含义

tokenizer就是分词器; 只不过在bert里和我们理解的中文分词不太一样,主要不是分词方法的问题,bert里基本都是最大匹配方法。

最大的不同在于“词”的理解和定义。 比如:中文基本是字为单位。
英文则是subword的概念,例如将"unwanted"分解成[“un”, “##want”, “##ed”] 请仔细理解这个做法的优点。
这是tokenizer的一个要义。

bert里涉及的tokenizer

BasicTokenzer

主要的类是BasicTokenizer,做一些基础的大小写、unicode转换、标点符号分割、小写转换、中文字符分割、去除重音符号等操作,最后返回的是关于词的数组(中文是字的数组)

 def tokenize(self, text):
    """Tokenizes a piece of text."""
    text = convert_to_unicode(text)
    text = self._clean_text(text)

    # This was added on November 1st, 2018 for the multilingual and Chinese
    # models. This is also applied to the English models now, but it doesn't
    # matter since the English models were not trained on any Chinese data
    # and generally don't have any Chinese data in them (there are Chinese
    # characters in the vocabulary because Wikipedia does have some Chinese
    # words in the English Wikipedia.).
    text = self._tokenize_chinese_chars(text)

    orig_tokens = whitespace_tokenize(text)
    split_tokens = []
    for token in orig_tokens:
      if self.do_lower_case:
        token = token.lower()
        token = self._run_strip_accents(token)
      split_tokens.extend(self._run_split_on_punc(token))

    output_tokens = whitespace_tokenize(" ".join(split_tokens))
    return output_tokens

BasicTokenzer是预处理。

wordpiecetokenizer

另外一个则是关键wordpiecetokenizer,就是基于vocab切词。

  def tokenize(self, text):
    """Tokenizes a piece of text into its word pieces.

    This uses a greedy longest-match-first algorithm to perform tokenization
    using the given vocabulary.

    For example:
      input = "unaffable"
      output = ["un", "##aff", "##able"]

    Args:
      text: A single token or whitespace separated tokens. This should have
        already been passed through `BasicTokenizer.

    Returns:
      A list of wordpiece tokens.
    """

    text = convert_to_unicode(text)

    output_tokens = []
    for token in whitespace_tokenize(text):
      chars = list(token)
      if len(chars) > self.max_input_chars_per_word:
        output_tokens.append(self.unk_token)
        continue

      is_bad = False
      start = 0
      sub_tokens = []
      while start < len(chars):
        end = len(chars)
        cur_substr = None

        #找个单词,找不到end向前滑动;还是看代码实在!!!
        while start < end:
          substr = "".join(chars[start:end])
          if start > 0:
            substr = "##" + substr
          if substr in self.vocab:
            cur_substr = substr
            break
          end -= 1
        if cur_substr is None:
          is_bad = True
          break
        sub_tokens.append(cur_substr)
        start = end

      if is_bad:
        output_tokens.append(self.unk_token)
      else:
        output_tokens.extend(sub_tokens)
    return output_tokens

FullTokenzier

这个基本上就是利用basic和wordpiece来切分。用于bert训练的预处理。基本就一个tokenize方法。不会有encode_plus等方法。

PretrainTokenizer

这个则是bert的base类,定义了很多方法(convert_ids_to_tokens)等。 后续的BertTokenzier,GPT2Tokenizer都继承自pretrainTOkenizer,下面的关系图可以看到这个全貌。

关系图

bert第三篇:tokenizer_第1张图片

实操

from transformers.tokenization_bert import BertTokenizer


tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
print("词典大小:",tokenizer.vocab_size)
text = "the game has gone!unaffable  I have a new GPU!"
tokens = tokenizer.tokenize(text)
print("英文分词来一个:",tokens)


text = "我爱北京天安门,吢吣"
tokens = tokenizer.tokenize(text)
print("中文分词来一个:",tokens)

input_ids = tokenizer.convert_tokens_to_ids(tokens)
print("id-token转换:",input_ids)


sen_code = tokenizer.encode_plus("i like  you  much", "but not him")
print("多句子encode:",sen_code)

print("decode:",tokenizer.decode(sen_code['input_ids']))

输出结果:

词典大小: 30522
英文分词来一个: ['the', 'game', 'has', 'gone', '!', 'una', '##ffa', '##ble', 'i', 'have', 'a', 'new', 'gp', '##u', '!']
中文分词来一个: ['我', '[UNK]', '北', '京', '天', '安', '[UNK]', ',', '[UNK]', '[UNK]']
id-token转换: [1855, 100, 1781, 1755, 1811, 1820, 100, 1989, 100, 100]
多句子encode: {'input_ids': [101, 1045, 2066, 2017, 2172, 102, 2021, 2025, 2032, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
decode: [CLS] i like you much [SEP] but not him [SEP]

看代码或者实际操练一遍,再来看理论知识更好。实操是关键,是思想的体现。

当然也可以单独实验bertwordpiecetokenzer

from transformers.tokenization_bert import BertWordPieceTokenizer
# initialize tokenizer
tokenizer = BertWordPieceTokenizer(
    vocab_file= "vocab.txt",
    unk_token = "[UNK]",
    sep_token = "[SEP]",
    cls_token = "[CLS]",
    pad_token  = "[PAD]",
    mask_token = "[MASK]",
    clean_text = True,
    handle_chinese_chars = True,
    strip_accents= True,
    lowercase = True,
    wordpieces_prefix = "##"
)


# sample sentence
sentence = "Language is a thing of beauty. But mastering a new language from scratch is quite a daunting prospect."

# tokenize the sample sentence
encoded_output = tokenizer.encode(sentence)
print(encoded_output)
print(encoded_output.tokens)

如何训练

其实就是提取vacab的过程。
BPE算法也比较容易理解:不断的选择most common的加入到词典,为什么? 因为覆盖的语料量比较大。

举个bpe的例子。

原始统计词:
('hug', 10), ('pug', 5), ('pun', 12), ('bun', 4), ('hugs', 5)

开始统计char:
('h' 'u' 'g', 10), ('p' 'u' 'g', 5), ('p' 'u' 'n', 12), ('b' 'u' 'n', 4), ('h' 'u' 'g' 's', 5)

合并最大的ug:

('h' 'ug', 10), ('p' 'ug', 5), ('p' 'u' 'n', 12), ('b' 'u' 'n', 4), ('h' 'ug' 's', 5)

合并最大频度的hug:
 ['b', 'g', 'h', 'n', 'p', 's', 'u', 'ug', 'un', 'hug'] 

最后原始统计词的表示转换为:

('hug', 10), ('p' 'ug', 5), ('p' 'un', 12), ('b' 'un', 4), ('hug' 's', 5)

训练自己中文的tokenizer

def train_cn_tokenizer():
    # ! pip install tokenizers

    from pathlib import Path

    from tokenizers import ByteLevelBPETokenizer

    paths = [str(x) for x in Path("zho-cn_web_2015_10K").glob("**/*.txt")]

    # Initialize a tokenizer
    tokenizer = ByteLevelBPETokenizer()

    # Customize training
    tokenizer.train(files=paths, vocab_size=52_000, min_frequency=3, special_tokens=[
        "",
        "",
        "",
        "",
        "",
    ])

    # Save files to disk
    tokenizer.save( ".","zh-tokenizer-train")

我强烈建议,根据自己的业务定制自己的vocab,当然要配套模型。
最后的结果

{"":0,"":1,"":2,"":3,"":4,"!":5,"\"":6,"#":7,"$":8,"%":9,"&":10,"'":11,"(":12,")":13,"*":14,"+":15,",":16,"-":17,".":18,"/":19,"0":20,"1":21,"2":22,"3":23,"4":24,"5":25,"6":26,"7":27,"8":28,"9":29,":":30,";":31,"<":32,"=":33,">":34,"?":35,"@":36,"A":37,"B":38,"C":39,"D":40,"E":41,"F":42,"G":43,"H":44,"I":45,"J":46,"K":47,"L":48,"M":49,"N":50,"O":51,"P":52,"Q":53,"R":54,"S":55,"T":56,"U":57,"V":58,"W":59,"X":60,"Y":61,"Z":62,"[":63,"\\":64,"]":65,"^":66,"_":67,"`":68,"a":69,"b":70,"c":71,"d":72,"e":73,"f":74,"g":75,"h":76,"i":77,"j":78,"k":79,"l":80,"m":81,"n":82,"o":83,"p":84,"q":85,"r":86,"s":87,"t":88,"u":89,"v":90,"w":91,"x":92,"y":93,"z":94,"{":95,"|":96,"}":97,"~":98,"¡":99,"¢":100,"£":101,"¤":102,"¥":103,"¦":104,"§":105,"¨":106,"©":107,"ª":108,"«":109,"¬":110,"®":111,"¯":112,"°":113,"±":114,"²":115,"³":116,"´":117,"µ":118,"¶":119,"·":120,"¸":121,"¹":122,"º":123,"»":124,"¼":125,"½":126,"¾":127,"¿":128,"À":129,"Á":130,"Â":131,"Ã":132,"Ä":133,"Å":134,"Æ":135,
...

总结

  1. 理论结合实践,敲代码仔细深度理解。
  2. tokenzier的本质是分词,提取有意义的wordpiece,又尽可能的少,用尽量少的信息单元来描述无限的组合。
  3. 几个类的集成理清楚。
  4. 里面的细节可以继续阅读原始类来继续跟进。
  5. wordpiece是比word更小的概念,有何好处? 能解决oov吗。 需要再次思考。

引用

  1. https://albertauyeung.github.io/2020/06/19/bert-tokenization.html
  2. https://spacy.io/usage/spacy-101
  3. https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.PreTrainedTokenizer
  4. https://zhuanlan.zhihu.com/p/160813500
  5. https://github.com/google/sentencepiece
  6. https://huggingface.co/transformers/tokenizer_summary.html
  7. https://huggingface.co/blog/how-to-train

你可能感兴趣的:(机器学习,深度学习,bert,tokenizer,wordpiece,berttokenizer,bpe)