- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- yolov8涨点系列之替换幽灵卷积GhostConv
没脾气的小玩家
yolov8涨点系列YOLO目标检测
文章目录核心思想主要步骤优势yolov8.yaml文件增加CBAMyolov8.yamlyolov8.yaml将Conv卷积替换成GhostConv 幽灵卷积(GhostConv)是一种新颖的卷积操作方法,旨在解决传统卷积神经网络中参数量和计算量过大的问题,尤其适用于资源受限的设备。以下是对幽灵卷积的详细介绍:核心思想 常规的卷积操作会产生大量的特征图,其中存在一定的冗余信息。幽灵卷积的核心思
- DL00478-涡轮叶片缺陷检测数据集yolo格式1300张左右
涡轮叶片缺陷检测数据集yolo格式1300张左右涡轮叶片缺陷检测数据集YOLO格式解析:提升研究与论文写作的关键要点在研究涡轮叶片缺陷检测的过程中,数据集的选择和格式处理是一个至关重要的环节。特别是当你打算通过卷积神经网络(CNN)等深度学习模型进行缺陷检测时,数据集的标注和格式化直接影响到模型的训练效果和论文的质量。本文将重点探讨涡轮叶片缺陷检测数据集的YOLO格式,并分析如何利用这一格式为研究
- 分类模型(BERT)训练全流程
巴伦是只猫
人工智能分类bert数据挖掘
使用BERT实现分类模型的完整训练流程BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种强大的预训练语言模型,在各种NLP任务中表现出色。下面我将详细梳理使用BERT实现文本分类模型的完整训练过程。1.准备工作1.1环境配置pipinstalltransformerstorchtensorflowpandassklearn1.2
- 开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-玩转ollama(一)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型
一、前言在AI大模型百花齐放的时代,很多人都对新兴技术充满了热情,都想尝试一下。然而,实际上要入门AI技术的门槛非常高。除了需要高端设备,还需要面临复杂的部署和安装过程,这让很多人望而却步。在这样的背景下,Ollama的出现为广大开发者和爱好者提供了一条便捷的道路,极大地降低了应用机器学习的门槛。Ollama的优势在于其极致的简化。通过这个平台,用户可以轻松下载、运行和管理各种机器学习模型,而无需
- 机器学习之——认识机器学习
-睡到自然醒~
golang重构开发语言
首先,什么是机器学习?参照百度百科的讲解,“机器学习是一门多领域交叉学科,设计概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习能力,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。”什么意思呢?也就是说,机器学习是一门跨领域的学科,是一种能够让机器模仿人类学习能力的一种学科。在Andrew的课程中,提到了几个机器学习的定义:1,A
- Epoch
老兵发新帖
人工智能
在深度学习和机器学习中,Epoch(轮次或周期)是一个核心训练概念,指模型在整个训练数据集上完成一次完整遍历的过程。以下是关于Epoch的详细解析:一、核心定义基本含义Epoch表示模型将所有训练数据完整学习一次的过程。例如:若训练集有10,000个样本,则1个Epoch即模型用这10,000个样本训练一轮。与相关概念的关系Batch(批次):数据集被分割成的小组(如每批32个样本)。Iterat
- Python --- day 10 Opencv模块的使用
AnAn__kang
pythonopencv开发语言
系列文章目录前言今天博主带大家进入Opencv的学习,这是一个专门针对处理图像和视频的一个模块,大家以理解为主,增强自己的编程思维,再后续我们训练模型时会大批量的处理图片时会经常用到这个模块。1OpenCV介绍OpenCV(开放源代码计算机视觉库)是一个开源的计算机视觉和机器学习软件库。由一系列C++类和函数构成,用于图像处理、计算机视觉领域的算法实现。1.1OpenCV优势**开源免费:**完全
- 深度学习图像分类数据集—百种病虫害分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:百种病虫害识别分类,训练集45095张,验证集7508张,测试集22619张具体类别为以下:insect_classes=["rice_leaf_roller","rice_leaf_caterpillar
- 机器学习数据预处理阶段为什么需要——归一化处理
参考:https://www.cnblogs.com/bjwu/p/8977141.html通常,在DataScience中,预处理数据有一个很关键的步骤就是数据的标准化。这里主要引用sklearn文档中的一些东西来说明,主要把各个标准化方法的应用场景以及优缺点总结概括,以来充当笔记。提升模型精度在机器学习算法的目标函数(例如SVM的RBF内核或线性模型的l1和l2正则化),许多学习算法中目标函数
- 车辆云端威胁情报共享系统的多维解析与发展路径
百态老人
大数据人工智能
第一部分:内容本质提取原始内容描述了一个闭环网络安全体系:“车辆实时上传异常行为日志至安全运营中心(VSOC),云端通过机器学习分析攻击模式并下发全局防御策略”。其核心架构包含:数据采集层:车辆端持续收集异常行为日志数据,包含CAN总线通信模式、网络流量特征及驾驶行为数据传输层:通过V2X通信协议和OTA更新通道实现车云双向通信分析层:安全运营中心(VSOC)采用CNN-BiSRU等深度学习模型进
- 基于深度学习的语音识别:从音频信号到文本转录
Blossom.118
机器学习与人工智能深度学习语音识别音视频人工智能机器学习线性代数计算机视觉
前言语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域中一个极具挑战性和应用前景的研究方向。它通过将语音信号转换为文本,为人们提供了更加自然和便捷的人机交互方式。近年来,深度学习技术在语音识别领域取得了显著进展,极大地提高了语音识别的准确率和鲁棒性。本文将详细介绍如何使用深度学习技术构建一个语音识别系统,从音频信号的预处理到模型的训练与部署。一、语音识别的基本概
- 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
Ryan_sz1
1、过拟合、欠拟合及其解决方案过拟合、欠拟合机器学习或者训练深度神经网络的时候经常会出现欠拟合和过拟合这两个问题,但是,一开始我们的模型往往是欠拟合的,也正是因为如此才有了优化的空间,我们需要不断的调整算法来使得模型的表达能拿更强。但是优化到了一定程度就需要解决过拟合的问题了。也就是说欠拟合是模型表达能力不够,达不到很好的表达效果。而过拟合是在训练集的范围内表达能力过强,导致完全拟合了训练集。解决
- 数字人系统:AI界的超级巨星,你准备好了吗?
优秘智能UMI
数字人人工智能深度学习计算机视觉机器学习自然语言处理语言模型图像处理
在这个日新月异的科技时代,每一个创新的火花都可能点燃一场变革的燎原之火。今天,我们要聊的,正是那颗在AI领域熠熠生辉的璀璨新星——优秘数字人系统。它不仅仅是技术的飞跃,更是对未来生活方式的深刻重塑,一场关于人机交互、智能共生的美好预演。技术原理:深度解析与智能构建的奥秘1.深度学习:智能的基石数字人系统的核心技术之一在于深度学习。深度学习是一种模仿人脑神经网络结构和功能的机器学习技术,通过构建多层
- 2024年1月15日学习记录——有关resnet18的简单再实现
BARBERUM
学习深度学习人工智能
2024年1月15日学习记录1.有关resnet18重写并训练的任务resnet本意为resdualnet,就是残差神经网络,利用shortcut的连接方式,将特征层隔层连接,在保留原有特征的同时进行深层卷积。可以有效的解决因神经网络层数的叠加而导致的退化问题。根据以下的逻辑图实现:首先图片作为输入,格式为[3,32,32]经过一个7*7的卷积核和一个最大池化层后进入残差结构层第一级残差结构层为两
- 聚焦基础研究突破,北电数智联合复旦大学等团队提出“AI安全”DDPA方法入选ICML
CSDN资讯
人工智能安全数据要素大数据
近日,由北电数智首席科学家窦德景教授牵头,联合复旦大学和美国奥本大学等科研团队共同研发,提出一种DDPA(DynamicDelayedPoisoningAttack)新型对抗性攻击方法,为机器学习领域的安全研究提供新视角与工具,相关论文已被国际机器学习大会(ICML2025)收录。ICML由国际机器学习学会(IMLS)主办,聚焦深度学习、强化学习、自然语言处理等机器学习前沿方向,是机器学习与人工智
- 商汤科技视觉算法面试30问全景精解
商汤科技视觉算法面试30问全景精解——AI赋能×智能视觉×产业创新:商汤科技视觉算法面试核心考点全览前言商汤科技(SenseTime)作为全球领先的人工智能平台公司,专注于计算机视觉、深度学习和智慧城市、智能汽车、智能医疗等领域,推动人脸识别、目标检测、视频分析、自动驾驶等前沿技术的产业化落地。商汤视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、自动驾驶、智慧医疗等复
- 旷视科技视觉算法面试30问全景精解
机 _ 长
科技算法面试深度学习YOLO
旷视科技视觉算法面试30问全景精解——AI赋能×智能安防×视觉创新:旷视科技视觉算法面试核心考点全览前言旷视科技(Megvii)作为全球领先的人工智能公司,专注于计算机视觉、深度学习和智能安防等领域,推动人脸识别、目标检测、视频分析、工业视觉等前沿技术的产业化落地。旷视视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、工业检测、智慧城市等复杂场景下的创新与工程能力。本文
- 阿里云态势感知和安骑士有什么区别?
阿腾云
阿里云态势感知和安骑士均是阿里云云盾安全产品,态势感知属于安全管理类的产品,安骑士数据服务器安全类产品,阿里云百科网来详细说下阿里云态势感知和安骑士之间的区别:态势感知和安骑士的区别简单来说,安骑士是检测云服务器漏洞的,态势感知提供安全类的大数据分析服务。态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案。安骑士
- Keras中to_categorical用法
大鳄鱼小鳄鱼
to_categorical使用fromkeras.utils.np_utilsimportto_categoricalint_labels=[1,2,9,4]labels=["1","8"]categorical_labels_1=to_categorical(int_labels)categorical_labels_2=to_categorical(labels)print(categori
- GPT-3 面试题
简介1、GPT-3是什么?它是基于什么模型的?GPT-3是一种基于深度学习原理的语言预测模型。它是由OpenAI开发的,可以从互联网数据中生成任何类型的文本。它只需要一小段文本作为输入,就可以生成大量的准确和复杂的机器生成文本²⁴。GPT-3是基于Transformer模型的,使用了仅有解码器的自回归架构。它使用下一个单词预测目标进行训练¹²。GPT-3有8个不同的模型,参数从1.25亿到1750
- 「日拱一码」035 机器学习——调参过程可视化
胖达不服输
「日拱一码」机器学习人工智能调参过程可视化神经网络python模型可解释性
目录超参数搜索的3D曲面可视化交互式3D可视化神经网络学习率的3D可视化SVM超参数的3D决策边界可视化超参数优化的3D动画超参数搜索的3D曲面可视化##超参数搜索的3D曲面可视化importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dfromsklearn.datasetsimportmake_
- 边缘计算与量子模型优化驱动医疗诊断新突破
内容概要在医疗人工智能领域,边缘计算与量子模型优化的协同演进正重构诊断系统的技术范式。通过将计算节点前置至医疗设备端,边缘架构有效解决了传统云端模型面临的实时性瓶颈,配合量子优化算法对复杂特征空间的快速寻优能力,使得CT、MRI等高维影像数据的解析效率提升显著。值得关注的是,框架选型直接影响着模型部署的可行性——TensorFlow在移动端推理优化方面的工具链完备性,与PyTorch动态图机制对迭
- 数据质量是机器学习项目的核心痛点,AI技术能提供智能化解决方案。
zzywxc787
pythonpandasnumpy人工智能自动化运维AI编程
一、数据质量诊断系统(Python实现)importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearn.ensembleimportIsolationForestfromtensorflow.keras.modelsimportSequentialfromte
- 精通 triton 使用 MLIR 的源码逻辑 - 第001节:triton 的应用简介
项目使用到MLIR,通过了解triton对MLIR的使用,体会到MLIR在较大项目中的使用方式,汇总一下。1.Triton概述OpenAITriton是一个开源的编程语言和编译器,旨在简化GPU高性能计算(HPC)的开发,特别是针对深度学习、科学计算等需要高效并行计算的领域。既允许开发者编写高度优化的代码,又不必过度关注底层硬件细节。这样,通过简化高性能计算,可以加速新算法的实现和实验。传统GPU
- 7.机器学习-十大算法之一拉索回归(Lasso)算法原理讲解
以山河作礼。
#机器学习算法机器学习算法回归
7.机器学习-十大算法之一拉索回归(Lasso)算法原理讲解一·摘要二·个人简介三·前言四·原理讲解五·算法流程六·代码实现6.1坐标下降法6.2最小角回归法七·第三方库实现7.1scikit-learn实现(坐标下降法):7.2scikit-learn实现(最小角回归法):一·摘要拉索回归(LassoRegression)是一种线性回归的正则化形式,它通过引入L1范数惩罚项来实现模型的稀疏性,从
- 机器学习算法之回归算法
福葫芦
机器学习回归算法
一、回归算法思维导图二、算法概念、原理、应用场景和实例代码1、线性回归1.1、概念线性回归算法是一种统计分析方法,用于确定两种或两种以上变量之间的定量关系。线性回归算法通过建立线性方程来预测因变量(y)和一个或多个自变量(x)之间的关系。其基本形式为y=wx+e,其中w是权重,x是自变量,e是误差项。1.2、算法原理线性回归算法的核心在于找到最佳的拟合直线,使得预测值与实际值之间的误差最小。
- 7篇1章7节:机器学习算法解读,与数值预测回归模型构建
MD分析
用R探索医药数据科学机器学习算法回归r语言数据挖掘
机器学习是当今数据分析和人工智能的核心工具之一,其算法广泛应用于分类、回归、排序和推荐等领域。本篇将详细讲解机器学习的四大经典算法类型,并以回归问题为例深入探讨数值预测的关键步骤,包括数据准备、线性回归模型构建、模型预测及误差评估,帮助读者更系统地理解和掌握机器学习的基础知识及实际应用。一、机器学习的算法在数据科学和人工智能的浪潮中,机器学习算法成为了解决各种数据问题的关键工具。机器学习主要处理四
- tensorflow sigmoid_cross_entropy_with_logits 函数解释及公式推导
CrazyWolf_081c
tensorflowsigmoid_cross_entropy_with_logits函数解释及公式推导tensorflow官方文档解释参考pytorch--BCELosspytorch--BCELoss解释参考定义在tensorflow/python/ops/nn_impl.py.功能:计算在给定logits和label之间的sigmoidcrossentropy。测量离散分类任务中的概率误差,
- ai绘画生成软件哪个好?几款好用的AI绘画软件分享!
呼酱小宝箱
随着人工智能技术的不断发展,越来越多的AI绘画生成软件被开发出来。这些软件利用深度学习技术,可以将普通照片或图像转化成具备艺术效果的画作。那么,ai绘画生成软件哪个好?首先,让我们来看一下几个常见的AI绘画生成软件,它们分别是:1、DeepDreamDeepDream是由Google开发的一款AI绘画生成软件。它通过卷积神经网络对输入的图片进行处理,从而生成出具有艺术风格的画作。DeepDream
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。