bert细节适配:添加词表之外的单词和标点符号的处理细节
由于bert中主要为中文,所以词表中英文单词比较少,但是一般英文单词如果简单的直接使用tokenize函数,往往在一些序列预测问题上存在一些对齐问题,或者很多不存在的单词或符号没办法处理而直接使用 unk 替换了,某些英文单词或符号失去了单词的预训练效果,所以采用以下一种更缓和的方式,来进行BERT的适配,可以提高模型在中英文文本下,预训练模型的效果
通过重写Tokenize类
①处理vocab中不存在的标点符号,使用替代方式
②不存在的单词,正向匹配 ##后缀 的词,一定程度上有接近语义或词性
不过segment_id需要自己计算,一般单句就是全部为0的列表了,即 segment_ids = [0] * len(token_ids)
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import re
import unicodedata
import six
import tensorflow as tf
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
index = 0
with tf.gfile.GFile(vocab_file, "r") as reader:
for token in reader.readlines():
if not token:
break
token = token.strip()
vocab[token] = index
index += 1
return vocab
def convert_by_vocab(vocab, items):
"""Converts a sequence of [tokens|ids] using the vocab."""
output = []
for item in items:
output.append(vocab[item])
return output
def convert_tokens_to_ids(vocab, tokens):
return convert_by_vocab(vocab, tokens)
def convert_ids_to_tokens(inv_vocab, ids):
return convert_by_vocab(inv_vocab, ids)
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200, do_lower_case=True):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
# 处理不在词表中的词
def wordpiecetoken(self, tokens):
output_tokens = []
for token in tokens:
if token in self.vocab:
output_tokens.append(token)
continue
chars = list(token)
# 如果超出长度,则用unk
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
end = len(chars)
while end > 1:
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
# end -= 1
start += 1
if cur_substr is not None:
sub_tokens.append(cur_substr)
break
end -= 1
if cur_substr is None:
is_bad = True
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
# 处理vocab中不存在的标点符号,使用替代方式
def deal_punctuation(self, c):
r = None
if c == '“':
r = '"'
elif c == '”':
r = '"'
elif c == '“':
r = '"'
elif c == '“':
r = '"'
elif c == '—':
r = '-'
elif c == '…':
r = '...'
elif c == '……':
r = '...'
else:
r = c
return r
def deal_punctuations(self, tokens):
R = []
for token in tokens:
token = self.deal_punctuation(token)
R.append(token)
return R
def encode(self, text, add_cls_sep=True):
tokens = self.tokenize(text)
# print(len(tokens))
# print(tokens)
tokens = self.deal_punctuations(tokens)
wordpiecetokens = self.wordpiecetoken(tokens)
print(wordpiecetokens)
token_ids = convert_tokens_to_ids(self.vocab, wordpiecetokens)
if add_cls_sep:
token_ids.insert(0,self.vocab['[CLS]'])
token_ids.append(self.vocab['[SEP]'])
return token_ids
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat in ("Cc", "Cf"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
def main():
import os
here = os.path.dirname(os.path.abspath(__file__))
vocab = load_vocab(os.path.join(here, 'chinese_L-12_H-768_A-12','vocab.txt'))
bsc = BasicTokenizer(vocab=vocab)
s = bsc.encode('今天和boyfriend出去散步,!1我们心情很那NIce人也很BEAtiFUlly…对吗')
# print('lens', len(s))
print(s)
# ['今', '天', '和', '##end', '出', '去', '散', '步', ',', '!', '1', '我', '们', '心', '情', '很', '那', 'nice', '人', '也', '很', '##lly', '...', '对', '吗']
#[101, 791, 1921, 1469, 11652, 1139, 1343, 3141, 3635, 117, 106, 8029, 2769, 812, 2552, 2658, 2523, 6929, 10192, 782, 738, 2523, 9456, 8106, 2190, 1408, 102]
if __name__ == "__main__":
main()