Pytorch 深度学习实践Lecture_9 Softmax Classifier

up主 刘二大人

视频链接 刘二大人的个人空间_哔哩哔哩_Bilibili


使用Softmax预测多分类问题

输出需要满足分布的条件

1) P(y=i) \geq 0

2) \sum_{i=0}^{n} P(y=i) =1

假设 Z^{l} \in \mathbb{R}^{k} 是最后一层的输出, Softmax 公式为

P(y=i)=\frac{e^{z_i}}{\sum_{j=0}^{K-1} e^{z_j}}, i \in \{ 0,\cdots ,{K-1}\}

示例 

Pytorch 深度学习实践Lecture_9 Softmax Classifier_第1张图片
 

损失函数(交叉熵)

Loss(\hat{Y},Y) = -Y \log{\hat{Y}}

Pytorch 深度学习实践Lecture_9 Softmax Classifier_第2张图片

numpy 计算loss示例: 

import numpy as np
y = np.array([1, 0, 0])
z = np.array([0.2, 0.1, -0.1])
y_pred = np.exp(z) / np.exp(z).sum()
loss = (-y * np.log(y_pred)).sum()
print(loss)

# output: 0.9729189131256584


如下过程可以使用torch.nn.CrossEntropyLoss() 计算loss
只要把最后一层的输出作为输入即可

Pytorch 深度学习实践Lecture_9 Softmax Classifier_第3张图片

import torch
y = torch.LongTensor([0])
z = torch.Tensor([[0.2, 0.1, -0.1]])
criterion = torch.nn.CrossEntropyLoss()
loss = criterion(z, y)
print(loss)
# output: tensor(0.9729)


"""
Mini-Batch: batch_size = 3
"""
Y = torch.LongTensor([2, 0, 1])
y_pred_1 = torch.Tensor([[0.1, 0.2, 0.9],   # 2 (True)
                         [1.1, 0.1, 0.2],   # 0 (True)
                         [0.2, 2.1, 0.1]])  # 1 (True)
y_pred_2 = torch.Tensor([[0.8, 0.2, 0.3],   # 2 (False)
                         [0.2, 0.3, 0.5],   # 0 (False)
                         [0.2, 0.2, 0.5]])  # 1 (False)
loss_1 = criterion(y_pred_1, Y)
loss_2 = criterion(y_pred_2, Y)
print(f"Batch Loss1 = {loss_1}")
print(f"Batch Loss2 = {loss_2}")

#Batch Loss1 = 0.4966353178024292
#Batch Loss2 = 1.2388995885849


CrossEntropyLoss 和NLLLoss的用法

CrossEntropyLoss — PyTorch 1.11.0 documentation

NLLLoss — PyTorch 1.11.0 documentation

1) CrossEntropyLoss: 网络的最后一层线性层的输出可以直接作为该损失函数的输入。
CrossEntropyLoss =  Softmax + Log + NLLLoss

2) NLLLoss: 网络的最后一层线性层的输入不能直接使用,需要经过LogSoftmax后的输出作为NLLLoss的输入
 


借鉴如下博客:

Pytorch详解NLLLoss和CrossEntropyLoss_豪哥123的博客-CSDN博客_nllloss

​​​​​​pytorch中CrossEntropyLoss和NLLLoss的区别与联系_Dynamicw的博客-CSDN博客_crossentropyloss nllloss 区别

MNIST 手写数字预测

【PyTorch学习笔记】15:动量(momentum),学习率衰减_LauZyHou的博客-CSDN博客_momentum取值

解决pytorch本地导入mnist数据集报错问题_Shine.Zhang的博客-CSDN博客_使用pytorch导入mnist数据集

每一张image都只有黑白色,通道数为1,大小为 28*28 , 所以输入为1*28*28

代码实现:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)  # 最后一层不激活


batch_size = 64
"""
torchvision.transforms: pytorch中的图像预处理包
一般用Compose把多个步骤整合到一起, 这里采用了两步:
    1) ToTensor(): Convert a PIL Image or numpy.ndarray to tensor
    2) Normalize(mean, std[, inplace]): 使用均值, 方差对Tensor进行归一化处理
"""
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
"""
torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)
root: 数据集存放目录
train: 
    True: 导入训练数据
    False: 导入测试数据
download: 是否下载数据集
transform: 对数据进行变换(主要是对PIL image做变换)
"""
train_dataset = datasets.MNIST(root='data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)

test_dataset = datasets.MNIST(root='data', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)

model = Net()
criterion = torch.nn.CrossEntropyLoss()
"""
momentum: 动量因子(默认0),综合考虑了梯度下降的方向和上次更新的方向
"""
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


def train(epoch):
    running_loss = 0
    for batch_id, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_id % 300 == 299:
            print('[epoch=%d, batch=%d] loss: %3f' % (epoch + 1, batch_id + 1, running_loss / 300))
    print(f'epoch={epoch}, total loss={running_loss}')
    return running_loss


def test():
    correct = 0
    total = 0
    with torch.no_grad():   # 以下code不生成计算图
        for data in test_loader:
            """
            images, labels = x, y 
            images: torch.Size([64, 1, 28, 28])
            labels: 64
            """
            images, labels = data
            # batch=64 -> output shape=(64,10)
            outputs = model(images)
            """
            torch.max(input_tensor): 返回input_tensor中所有元素的最大值
            max_value, max_value_index = torch.max(input_tensor, dim=0): 返回每一列的最大值,且返回索引(返回最大元素在各列的行索引)
            max_value, max_value_index = torch.max(input_tensor, dim=1): 返回每一行的最大值,且返回索引(返回最大元素在各列的行索引)
            """
            _, predict = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            """
            predict==labels -> tensor (size=predict=labels)  value:True/False
            (predict == labels).sum() -> tensor, value: 等于True的个数
            (predict == labels).sum().item() -> 数值(上一步等于True的个数)
            """
            correct += (predict == labels).sum().item()
    accuracy = str(100 * correct / total) + '%'
    print(f'Accuracy on test set: {accuracy}')
    return accuracy


if __name__ == '__main__':
    epoch_list = []
    accuracy_list = []
    loss_list = []
    for epoch in range(10):
        loss = train(epoch)
        accuracy = test()
        epoch_list.append(epoch)
        loss_list.append(loss)
        accuracy_list.append(accuracy)

    # plot 1 loss:
    plt.subplot(1, 2, 1)
    plt.plot(epoch_list, loss_list)
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.title("Loss")
    plt.tight_layout()  # 设置默认的间距

    # plot 2 accuracy:
    plt.subplot(1, 2, 2)
    plt.plot(epoch_list, accuracy_list)
    plt.xlabel('epoch')
    plt.ylabel('accuracy')
    plt.title("Accuracy")
    plt.tight_layout()  # 设置默认的间距
    plt.show()

结果显示:

Pytorch 深度学习实践Lecture_9 Softmax Classifier_第4张图片

你可能感兴趣的:(Pytorch深度学习实践,pytorch,深度学习,人工智能)