TFRecord教程、原理及用法

目录

  • 一、TFRecord简介
    • 1.1 TFRecord格式简介
    • 1.2 为什么用TFRecord
  • 二、TFRecord文件操作
    • 2.1 制作TFRecord文件
    • 2.2 读取TFRecord文件
    • 2.3 生成并读取含有图片的TFRecord
    • 2.4 生成并读取含有视频的TFRecord
  • 三、获取TFRecord文件的特征属性以及行数
  • 五、对TFRecord文件进行采样

一、TFRecord简介

1.1 TFRecord格式简介

tfrecord是谷歌专门为tensorflow设计的一种数据格式,tfrecord是一种二进制文件,不仅可以实现对数据的压缩存储,同时也有专门的API可以快速的读取其中存储的内容。一个tfrecord文件内部由很多tf.train.Example组成,这些Example是基于数据压缩编码标准Protobuf进行实现的。每一个Example中包含了一系列的tf.train.Feature属性,每一个feature是一个key-value键值对,其格式如下图所示。
TFRecord教程、原理及用法_第1张图片

其中key为自定义的sring类型,value可以是如下的类型:

  • bytes_list: 可以存储string 和byte两种数据类型。
  • float_list: 可以存储float(float32)与double(float64) 两种数据类型 。
  • int64_list: 可以存储:bool, enum, int32, uint32, int64, uint64 。

1.2 为什么用TFRecord

tensorflow可以支持多种数据格式,例如可以直接读取图片、视频、文本等数据。在数据集较小时,我们可以把数据全部加在到内存,以便减小数据IO带来的延迟。但当数据量很大时,就只能放在硬盘上一点点读取,如此数据IO会导致整体的速度变慢,同时数据的移动、拷贝也是需要时间的,上述这些情况,将数据制作成TFRecord格式可以得到缓解。

二、TFRecord文件操作

2.1 制作TFRecord文件

# coding=utf-8
import tensorflow as tf
import numpy as np
# The following functions can be used to convert a value to a type compatible
# with tf.Example.

def _bytes_feature(value):
  """Returns a bytes_list from a string / byte."""
  if isinstance(value, type(tf.constant(0))):
    value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
  return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def _float_feature(value):
  """Returns a float_list from a float / double."""
  return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))

def _int64_feature(value):
  """Returns an int64_list from a bool / enum / int / uint."""
  return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
  
# 注意如果value值本身是list,那么传递给tf.train.Int64List中的参数是不需要加中括号 
def _int64_list_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
    
def _bytes_list_feature(value):
	# "存放数组"
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value.astype(np.float32).tostring()]))
# def _int64_list_feature(value):
#     return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def serialize_example(feature0, feature1, feature2, feature3, feature4):
  """
  Creates a tf.Example message ready to be written to a file.
  """
  # Create a dictionary mapping the feature name to the tf.Example-compatible
  # data type.
  feature = {
      'feature0': _int64_feature(feature0),
      'feature1': _int64_list_feature(feature1),
      'feature2': _bytes_feature(feature2),
      'feature3': _float_feature(feature3),
      'feature4': _bytes_list_feature(feature4)
  }
  # Create a Features message using tf.train.Example.
  example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
  return example_proto.SerializeToString()

# serialized_example = serialize_example(False, 4, b'goat', 0.9876)
writer = tf.python_io.TFRecordWriter("my.tfrecord")

2.2 读取TFRecord文件

# 紧接着上面
feature_description = {
        'feature0': tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'feature1': tf.io.FixedLenFeature((3), tf.int64, default_value=[-1, -1, -1]),
        'feature2': tf.io.FixedLenFeature((), tf.string, default_value=''),
        'feature3': tf.io.FixedLenFeature((), tf.float32, default_value=0.0),
        'feature4': tf.io.FixedLenFeature((), tf.string)
    }

def _parse_function(example_proto):

        # Parse the input `tf.Example` proto using the dictionary above.
        feature = tf.io.parse_single_example(example_proto, feature_description)
        # 注意要对数组就行加码,且数组元素对应的类型一定要同最开始的一样。
        feature['feature4'] = tf.decode_raw(feature['feature4'], tf.float32)
        return feature


raw_image_dataset = tf.data.TFRecordDataset('my.tfrecord')
dataset = raw_image_dataset.map(_parse_function)
dataset = dataset.batch(2)
# dataset = dataset.shuffle(1000)
# dataset = dataset.prefetch(buffer_size=10)
iterator = dataset.make_one_shot_iterator()
data = iterator.get_next()
with tf.Session() as sess:
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    datas = []
    for i in range(1000000):
        my_data = sess.run([data])
        a = 0

2.3 生成并读取含有图片的TFRecord

上面的例子中,只是示范了如何将标量存储到tfrecord文件中,下面演示一下如何将图片存储到tfrecord中,由于tfrecord文件不支持直接存储数组,但可以存储字节串,因此我们需要以二进制字节吗的形式读取片。

# 生产tfrecord
import tensorflow as tf
import cv2
writer = tf.python_io.TFRecordWriter("my_img.tfrecord")
path = ""
img = cv2.imread("my_image.jpeg")
encode_jpg = tf.io.encode_jpeg(img)
with tf.Session() as sess:
    encode_jpg = sess.run([encode_jpg])
tf_example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'image/encoded': tf.train.Feature(bytes_list=tf.train.BytesList(value=[encode_jpg[0]]))
            }
        ))
writer.write(tf_example.SerializeToString())
writer.close()
# 读取tfrecord
features = {
        "image/encoded": tf.io.FixedLenFeature([1], tf.string)
    }
raw_image_dataset = tf.data.TFRecordDataset('test_1.tfrecord')
def _parse_image_function(example_proto):
    data = tf.io.parse_single_example(example_proto, features)
    data['image/encoded'] = tf.image.decode_image(data['image/encoded'][0], channels=3)
    return data


 dataset = raw_image_dataset.map(_parse_image_function)
 dataset = dataset.batch(1)
 # dataset = dataset.shuffle(1000)
 # dataset = dataset.prefetch(buffer_size=10)
 iterator = dataset.make_one_shot_iterator()
 data = iterator.get_next()
 with tf.Session() as sess:
     init_op = tf.global_variables_initializer()
     sess.run(init_op)
     for i in range(1):
         my_img = sess.run([data])

2.4 生成并读取含有视频的TFRecord

以下代码来自Video TFRecords: How to Efficiently Load Video Data,略有修改。

# 生成tfrecord
import pathlib
import tensorflow as tf
import numpy as np
import imageio
from tqdm import tqdm

def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))


def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def mp4_2_numpy(filename):
    """Reads a video and returns its contents in matrix form.
    Args:
        filename (str): a path to a video
    Returns:
        np.array(): matrix contents of the video
    """
    vid = imageio.get_reader(filename, 'ffmpeg')
    # read all of video frames resulting in a (T, H, W, C) matrix
    data = np.stack(list(vid.iter_data()))
    return data


def line2example(line):
    """Reads a line from the datafile and returns an
    associated TFRecords example containing the encoded data.
    Args:
        line (str): a line from the datafile
            (formatted as {filepath} {label})
    Returns:
        tf.train.SequenceExample: resulting TFRecords example
    """
    # extract information on dataexample
    fn, label = line.split(' ')
    label = int(label)

    # read matrix data and save its shape
    video_data = mp4_2_numpy(fn)
    t, h, w, c = video_data.shape

    # save video as list of encoded frames using tensorflow's operation
    img_bytes = [tf.image.encode_jpeg(frame, format='rgb') for frame in video_data]
    with tf.Session() as sess:
        img_bytes = sess.run(img_bytes)

    sequence_dict = {}
    # create a feature for each encoded frame
    img_feats = [tf.train.Feature(bytes_list=tf.train.BytesList(value=[imgb])) for imgb in img_bytes]
    # save video frames as a FeatureList
    sequence_dict['video_frames'] = tf.train.FeatureList(feature=img_feats)

    # also store associated metadata
    context_dict = {}
    context_dict['filename'] = _bytes_feature(fn.encode('utf-8'))
    context_dict['label'] = _int64_feature(label)
    context_dict['temporal'] = _int64_feature(t)
    context_dict['height'] = _int64_feature(h)
    context_dict['width'] = _int64_feature(w)
    context_dict['depth'] = _int64_feature(c)

    # combine list + context to create TFRecords example
    sequence_context = tf.train.Features(feature=context_dict)
    sequence_list = tf.train.FeatureLists(feature_list=sequence_dict)
    example = tf.train.SequenceExample(context=sequence_context, feature_lists=sequence_list)

    return example

def create_tfrecords(datafile_path, save_path):
    """Creates a TFRecords dataset from video files.
    Args:
        datafile_path (str): a path to the formatted datafiles (includes train.txt, etc.)
        save_path (str): where to save the .tfrecord files 
    """
    save_path = pathlib.Path(save_path)
    save_path.mkdir(exist_ok=True, parents=True)

    # create a TFRecord for each datasplit 
    for dset_name in ['train.txt', 'test.txt', 'val.txt']:
        # read the lines of the datafile
        with open(datafile_path + dset_name, 'r') as f:
            lines = f.readlines()

        # write each example to a {split}.tfrecord (train.tfrecord, etc.) 
        record_file = str(save_path/'{}.tfrecord'.format(dset_name[:-4]))
        with tf.python_io.TFRecordWriter(record_file) as writer: 
            for line in tqdm(lines): 
                example = line2example(line)
                writer.write(example.SerializeToString())
# 读取tfrecord


# define the features to decode
sequence_features = {
    'video_frames': tf.FixedLenSequenceFeature([], dtype=tf.string)
}

context_features = {
    'filename': tf.io.FixedLenFeature([], tf.string),
    'height': tf.io.FixedLenFeature([], tf.int64),
    'width': tf.io.FixedLenFeature([], tf.int64),
    'depth': tf.io.FixedLenFeature([], tf.int64),
    'temporal': tf.io.FixedLenFeature([], tf.int64),
    'label': tf.io.FixedLenFeature([], tf.int64),
}


IMAGE_SIZE_H = 244
IMAGE_SIZE_W = 224
@tf.function
def resize(img):
    return tf.image.resize(img, [IMAGE_SIZE_H, IMAGE_SIZE_W])


def _parse_example(example_proto):
    # Parse the input tf.train.Example using the dictionary above.
    context, sequence = tf.parse_single_sequence_example(example_proto,
                                                         context_features=context_features,
                                                         sequence_features=sequence_features)
    # extract the expected shape
    shape = (context['temporal'], context['height'], context['width'], context['depth'])

    ## the golden while loop ##
    # loop through the feature lists and decode each image seperately

    # decoding the first video
    video_data = tf.image.decode_image(tf.gather(sequence['video_frames'], [0])[0])
    video_data = tf.expand_dims(video_data, 0)

    i = tf.constant(1, dtype=tf.int32)
    # condition of when to stop / loop through every frame
    cond = lambda i, _: tf.less(i, tf.cast(context['temporal'], tf.int32))

    # reading + decoding the i-th image frame
    def body(i, video_data):
        # get the i-th index
        encoded_img = tf.gather(sequence['video_frames'], [i])
        # decode the image
        img_data = tf.image.decode_image(encoded_img[0])
        # append to list using tf operations
        video_data = tf.concat([video_data, [img_data]], 0)
        # update counter & new video_data
        return (tf.add(i, 1), video_data)

        
    _, video_data = tf.while_loop(cond, body, [i, video_data],
    shape_invariants = [i.get_shape(), tf.TensorShape([None])])
    # use this to set the shape + dtype
    video_data = tf.reshape(video_data, shape)
    video_data = tf.cast(video_data, tf.float32)
    
    # resize each frame in video -- can apply different augmentations etc. like this
    video_data = tf.map_fn(resize, video_data, back_prop=False, parallel_iterations=10)
    
    label = context['label']
    return video_data, label

# create the dataset
dataset = tf.data.TFRecordDataset('train.tfrecord') \
    .map(_parse_example) \
    .batch(2)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()

# use standard tf training setup
with tf.Session() as sess:
    batch_vid, batch_label = sess.run(next_element)
    print(batch_vid.shape, batch_label)

三、获取TFRecord文件的特征属性以及行数

当我们不知道一个tfrecord文件的特征格式时,就不方便读取在其中的数据,通过如下的代码,可以获取到tfrecord文件中有哪些特征字段及格式。

def getTFRecordFormat(files):
    # files: [file_path1, file_path2,....]
    with tf.Session() as sess:
        # filenames = [path]
        # 加载TFRecord数据
        ds = tf.data.TFRecordDataset(files)
        ds = ds.batch(1)
        ds = ds.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
        iterator = ds.make_one_shot_iterator()
        # 为了加快速度,仅仅简单拿一组数据看下结构
        batch_data = iterator.get_next()
        while True:
            res = sess.run(batch_data)
            for serialized_example in res:
                example_proto = tf.train.Example.FromString(serialized_example)
                features = example_proto.features

                for key in features.feature:
                    feature = features.feature[key]
                    if len(feature.bytes_list.value) > 0:
                        ftype = 'bytes_list'
                        fvalue = feature.bytes_list.value

                    if len(feature.float_list.value) > 0:
                        ftype = 'float_list'
                        fvalue = feature.float_list.value

                    if len(feature.int64_list.value) > 0:
                        ftype = 'int64_list'
                        fvalue = feature.int64_list.value
                    result = '{0} : {1} {2}'.format(key, ftype, len(fvalue))
                    print(result)
                break
                print("*"*20)
            break

获取tfrecord文件中的数据行数

 count = 0
 for record in tf.python_io.tf_record_iterator(file):
     count += 1
print(count)

五、对TFRecord文件进行采样

在推荐广告领域,负样本占了绝大多数,如果直接在所有的数据上训练,很有可能会对模型的性能带来负面影响,因此有必要对负样本进行降采样,假设是对已经生成好的tfrecord文件进行采样10%。

import tensorflow as tf
import random

feature_map = {
        'label':tf.FixedLenFeature([1], tf.float32),
        'dense':tf.FixedLenFeature([215], tf.float32),
        'cat': tf.FixedLenFeature([50], tf.int64)
        }

def _parse_example(example):
    feat_tensor_maps = tf.parse_single_example(example, feature_map)
    return feat_tensor_maps

def input_layer():
    filenames = tf.placeholder(tf.string, shape=[None])
    dataset = tf.data.TFRecordDataset(filenames)
    dataset = dataset.map(_parse_example)  # Parse the record into tensors.
    dataset = dataset.batch(1000)
    dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    #dataset = dataset.repeat()  # Repeat the input indefinitely.
    iterator = dataset.make_initializable_iterator()

    return filenames, iterator, iterator.get_next()

tf_writer = tf.python_io.TFRecordWriter('sampled_sample.tfrecords')

tfrecord_path = 'all_sample.tfrecords'
filenames_tensor, iterator, ele_tensor = input_layer()
i = 0
try:
    with tf.Session() as sess:
        sess.run(iterator.initializer, feed_dict={filenames_tensor: [tfrecord_path]})
        while True:
            i += 1
            fea_label, = sess.run([ele_tensor])
            cat_fea = fea_label['cat']
            dense_fea = fea_label['dense']
            label = fea_label['label']
            example = tf.train.Example()
         
            for i in range(label.shape[0]):
                if label[i][0] == 0 and random.randint(1, 10) != 1:
                    continue
                features = tf.train.Features(
                    feature={
                        "cat": tf.train.Feature(
                            int64_list=tf.train.Int64List(value=cat_fea[i])),
                        "label": tf.train.Feature(
                            float_list=tf.train.FloatList(value=label[i])),
                        'dense': tf.train.Feature(float_list=tf.train.FloatList(value=dense_fea[i]))
                    }
                )
                tf_example = tf.train.Example(features=features)
                serialized = tf_example.SerializeToString()
                tf_writer.write(serialized)

except Exception as e:
    print(e)
tf_writer.close()

[1]: 高效的数据压缩编码方式 Protobuf
[2]: 深度学习12-TFRecord详解
[3]: TFRecord 和 tf.Example

你可能感兴趣的:(python,tensorflow,深度学习)