Redis(Remote Dictionary Server) 是一个使用 C 语言编写的,开源的(BSD许可)高性能非关系型(NoSQL)的键值对数据库。
Redis 可以存储键和五种不同类型的值之间的映射。键的类型只能为字符串,值支持五种数据类型:字符串、列表、集合、散列表、有序集合。
与传统数据库不同的是 Redis 的数据是存在内存中的,所以读写速度非常快,因此 redis 被广泛应用于缓存方向,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。另外,Redis 也经常用来做分布式锁。除此之外,Redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。
优点
缺点
Redis缓存的优点
高性能:
假如用户第一次访问数据库中的某些数据。这个过程会比较慢,因为是从硬盘上读取的。将该用户访问的数据存在数缓存中,这样下一次再访问这些数据的时候就可以直接从缓存中获取了。操作缓存就是直接操作内存,所以速度相当快。如果数据库中的对应数据改变的之后,同步改变缓存中相应的数据即可!
高并发:
直接操作缓存能够承受的请求是远远大于直接访问数据库的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样用户的一部分请求会直接到缓存这里而不用经过数据库。
本地缓存和分布式缓存
缓存分为本地缓存和分布式缓存。以 Java 为例,使用自带的 map 或者 guava 实现的是本地缓存,最主要的特点是轻量以及快速,生命周期随着 jvm 的销毁而结束,并且在多实例的情况下,每个实例都需要各自保存一份缓存,缓存不具有一致性。
使用 redis 或 memcached 之类的称为分布式缓存,在多实例的情况下,各实例共用一份缓存数据,缓存具有一致性。缺点是需要保持 redis 或 memcached服务的高可用,整个程序架构上较为复杂。
Redis为什么这么快
1、完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于 HashMap,HashMap 的优势就是查找和操作的时间复杂度都是O(1);
2、数据结构简单,对数据操作也简单,Redis 中的数据结构是专门进行设计的;
3、采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;
4、使用多路 I/O 复用模型,非阻塞 IO;
5、使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis 直接自己构建了 VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求;
Redis线程模型
Redis基于Reactor模式开发了网络事件处理器,这个处理器被称为文件事件处理器(file event handler)。它的组成结构为4部分:多个套接字、IO多路复用程序、文件事件分派器、事件处理器。因为文件事件分派器队列的消费是单线程的,所以Redis才叫单线程模型。
虽然文件事件处理器以单线程方式运行, 但通过使用 I/O 多路复用程序来监听多个套接字, 文件事件处理器既实现了高性能的网络通信模型, 又可以很好地与 redis 服务器中其他同样以单线程方式运行的模块进行对接, 这保持了 Redis 内部单线程设计的简单性。
Redis主要有5种数据类型,包括String,List,Set,Zset,Hash,满足大部分的使用要求
数据类型 | 可以存储的值 | 操作 | 应用场景 |
---|---|---|---|
STRING | 字符串、整数或者浮点数 | 对整个字符串或者字符串的其中一部分执行操作 对整数和浮点数执行自增或者自减操作 | 做简单的键值对缓存 |
LIST | 列表 | 从两端压入或者弹出元素 对单个或者多个元素进行修剪, 只保留一个范围内的元素 | 存储一些列表型的数据结构,类似粉丝列表、文章的评论列表之类的数据 |
SET | 无序集合 | 添加、获取、移除单个元素 检查一个元素是否存在于集合中 计算交集、并集、差集 从集合里面随机获取元素 | 交集、并集、差集的操作,比如交集,可以把两个人的粉丝列表整一个交集 |
HASH | 包含键值对的无序散列表 | 添加、获取、移除单个键值对 获取所有键值对 检查某个键是否存在 | 结构化的数据,比如一个对象 |
ZSET | 有序集合 | 添加、获取、删除元素 根据分值范围或者成员来获取元素 计算一个键的排名 | 去重但可以排序,如获取排名前几名的用户 |
一个字符串类型的值能存储最大容量为512M。
总结一
计数器
可以对 String 进行自增自减运算,从而实现计数器功能。Redis 这种内存型数据库的读写性能非常高,很适合存储频繁读写的计数量。
缓存
将热点数据放到内存中,设置内存的最大使用量以及淘汰策略来保证缓存的命中率。
会话缓存
可以使用 Redis 来统一存储多台应用服务器的会话信息。当应用服务器不再存储用户的会话信息,也就不再具有状态,一个用户可以请求任意一个应用服务器,从而更容易实现高可用性以及可伸缩性。
全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
查找表
例如 DNS 记录就很适合使用 Redis 进行存储。查找表和缓存类似,也是利用了 Redis 快速的查找特性。但是查找表的内容不能失效,而缓存的内容可以失效,因为缓存不作为可靠的数据来源。
消息队列(发布/订阅功能)
List 是一个双向链表,可以通过 lpush 和 rpop 写入和读取消息。不过最好使用 Kafka、RabbitMQ 等消息中间件。
分布式锁实现
在分布式场景下,无法使用单机环境下的锁来对多个节点上的进程进行同步。可以使用 Redis 自带的 SETNX 命令实现分布式锁,除此之外,还可以使用官方提供的 RedLock 分布式锁实现。
其它
Set 可以实现交集、并集等操作,从而实现共同好友等功能。ZSet 可以实现有序性操作,从而实现排行榜等功能。
总结二
Redis相比其他缓存,有一个非常大的优势,就是支持多种数据类型。
数据类型说明string字符串,最简单的k-v存储hashhash格式,value为field和value,适合ID-Detail这样的场景。list简单的list,顺序列表,支持首位或者末尾插入数据set无序list,查找速度快,适合交集、并集、差集处理sorted set有序的set
其实,通过上面的数据类型的特性,基本就能想到合适的应用场景了。
string——适合最简单的k-v存储,类似于memcached的存储结构,短信验证码,配置信息等,就用这种类型来存储。
hash——一般key为ID或者唯一标示,value对应的就是详情了。如商品详情,个人信息详情,新闻详情等。
list——因为list是有序的,比较适合存储一些有序且数据相对固定的数据。如省市区表、字典表等。因为list是有序的,适合根据写入的时间来排序。
set——可以简单的理解为ID-List的模式,如微博中一个人有哪些好友,set最牛的地方在于,可以对两个set提供交集、并集、差集操作。例如:查找两个人共同的好友等。
Sorted Set——是set的增强版本,增加了一个score参数,自动会根据score的值进行排序。比较适合类似于top 10等不根据插入的时间来排序的数据。
如上所述,虽然Redis不像关系数据库那么复杂的数据结构,但是,也能适合很多场景,比一般的缓存数据结构要多。了解每种数据结构适合的业务场景,不仅有利于提升开发效率,也能有效利用Redis的性能。
参考:http://redisbook.com/preview/aof/aof_implement.html
持久化就是把内存的数据写到磁盘中去,防止服务宕机了内存数据丢失。Redis 提供两种持久化机制 RDB(默认) 和 AOF 机制。
1、RDB:是Redis DataBase缩写快照。
RDB是Redis默认的持久化方式。按照一定的时间将内存的数据以快照的形式保存到硬盘中,对应产生的数据文件为dump.rdb。通过配置文件中的save参数来定义快照的周期。
RDB的优缺点
优点:
缺点:
2、AOF:持久化
AOF持久化(即Append Only File持久化),则是将Redis执行的每次写命令记录到单独的日志文件中,当重启Redis会重新将持久化的日志中文件恢复数据。当两种方式同时开启时,数据恢复Redis会优先选择AOF恢复。
Redis在处理一条命令时,并不立即调用write写AOF文件,只是将数据写入到AOF buffer(server.aof_buf)中。调用write和命令处理是分开的,Redis只在每次进入epoll_wait之前做write操作。
当 AOF 持久化功能处于打开状态时, 服务器在执行完一个写命令之后, 会以协议格式将被执行的写命令追加到服务器状态的 aof_buf 缓冲区的末尾 。
Redis 的服务器进程就是一个事件循环(loop), 这个循环中的文件事件负责接收客户端的命令请求, 以及向客户端发送命令回复, 而时间事件则负责执行像 serverCron 函数这样需要定时运行的函数。因为服务器在处理文件事件时可能会执行写命令, 使得一些内容被追加到 aof_buf 缓冲区里面, 所以在服务器每次结束一个事件循环之前, 它都会调用 flushAppendOnlyFile 函数, 考虑是否需要将 aof_buf 缓冲区中的内容写入和保存到 AOF 文件里面, 这个过程可以用以下伪代码表示:
def eventLoop():
while True:
# 处理文件事件,接收命令请求以及发送命令回复
# 处理命令请求时可能会有新内容被追加到 aof_buf 缓冲区中
processFileEvents()
# 处理时间事件
processTimeEvents()
# 考虑是否要将 aof_buf 中的内容写入和保存到 AOF 文件里面
flushAppendOnlyFile()
为了提高文件的写入效率, 在现代操作系统中, 当用户调用 write 函数, 将一些数据写入到文件的时候, 操作系统通常会将写入数据暂时保存在一个内存缓冲区里面, 等到缓冲区的空间被填满、或者超过了指定的时限之后, 才真正地将缓冲区中的数据写入到磁盘里面(刷盘)。这种做法虽然提高了效率, 但也为写入数据带来了安全问题, 因为如果计算机发生停机, 那么保存在内存缓冲区里面的写入数据将会丢失。为此, 系统提供了 fsync 和 fdatasync 两个同步函数, 它们可以强制让操作系统立即将缓冲区中的数据写入到硬盘里面, 从而确保写入数据的安全性。
appendfsync配置
服务器配置 appendfsync 选项的值直接决定 AOF 持久化功能的效率和安全性。
因为处于 no 模式下的 flushAppendOnlyFile 调用无须执行同步操作, 所以该模式下的 AOF 文件写入速度总是最快的, 不过因为这种模式会在系统缓存中积累一段时间的写入数据, 所以该模式的单次同步时长通常是三种模式中时间最长的: 从平摊操作的角度来看, no 模式和 everysec 模式的效率类似, 当出现故障停机时, 使用 no 模式的服务器将丢失上次同步 AOF 文件之后的所有写命令数据。
AOF的优缺点
优点:
缺点:
选择合适的持久化方式
Redis持久化数据和缓存扩容
Redis是key-value数据库,我们可以设置Redis中缓存的key的过期时间。Redis的过期策略就是指当Redis中缓存的key过期了,Redis如何处理。
过期策略通常有以下三种:
Redis中同时使用了惰性过期和定期过期两种过期策略。
可以通过EXPIRE和PERSIST命令,设置Redis key的过期时间和永久有效。
redis内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。
Redis的内存淘汰策略是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据。
全局键的空间选择性移除
设置过期时间的键的空间选择性移除
Redis的内存淘汰策略的选取并不会影响过期的key的处理。内存淘汰策略用于处理内存不足时的需要申请额外空间的数据;过期策略用于处理过期的缓存数据。
Redis的内存用完了,如果达到设置的上限,Redis的写命令会返回错误信息(但是读命令还可以正常返回。)或者你可以配置内存淘汰机制,当Redis达到内存上限时会冲刷掉旧的内容。
Redis的内存优化
可以好好利用Hash,list,sorted set,set等集合类型数据,因为通常情况下很多小的Key-Value可以用更紧凑的方式存放到一起。尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该尽可能的将你的数据模型抽象到一个散列表里面。比如你的web系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的key,而是应该把这个用户的所有信息存储到一张散列表里面。
参考:https://cloud.tencent.com/developer/article/1189074
事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执行。
事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执行。 EXEC 命令负责触发并执行事务中的所有命令: 当使用 AOF 方式做持久化的时候, Redis 会使用单个 write(2) 命令将事务写入到磁盘中。 然而,如果 Redis 服务器因为某些原因被管理员杀死,或者遇上某种硬件故障,那么可能只有部分事务命令会被成功写入到磁盘中。 如果 Redis 在重新启动时发现 AOF 文件出了这样的问题,那么它会退出,并汇报一个错误。 使用 redis-check-aof 工具可以修复这一问题:它会移除 AOF 文件中不完整事务的信息,确保服务器可以顺利启动。
Redis 事务的本质是通过MULTI、EXEC、WATCH等一组命令的集合。事务支持一次执行多个命令,一个事务中所有命令都会被序列化。在事务执行过程,会按照顺序串行化执行队列中的命令,其他客户端提交的命令请求不会插入到事务执行命令序列中。总结说:redis事务就是一次性、顺序性、排他性的执行一个队列中的一系列命令。
应用
事务执行过程中,如果服务端收到有EXEC、DISCARD、WATCH、MULTI之外的请求,将会把请求放入队列中排队。
> MULTI
OK
> INCR foo
QUEUED
> INCR bar
QUEUED
> EXEC
1) (integer) 1
2) (integer) 1
Redis事务功能是通过MULTI、EXEC、DISCARD和WATCH 四个原语实现的。Redis会将一个事务中的所有命令序列化,然后按顺序执行。
错误处理
redis 不支持回滚,Redis 在事务失败时不进行回滚,而是继续执行余下的命令, 所以 Redis 的内部可以保持简单且快速。
Redis 在事务失败时不进行回滚,而是继续执行余下的命令,这种做法的优点:
WATCH
WATCH 命令是一个乐观锁,可以为 Redis 事务提供 check-and-set (CAS)行为。可以监控一个或多个键,一旦其中有一个键被修改(或删除),之后的事务就不会执行,监控一直持续到EXEC命令。UNWATCH命令可以取消watch对所有key的监控。被 WATCH 的键会被监视,并会发觉这些键是否被改动过了。 如果有至少一个被监视的键在 EXEC 执行之前被修改了, 那么整个事务都会被取消, EXEC 返回空多条批量回复(null multi-bulk reply)来表示事务已经失败。
举个例子, 假设我们需要原子性地为某个值进行增 1 操作(假设 INCR 不存在)。首先我们可能会这样做:
val = GET mykey
val = val + 1
SET mykey $val
上面的这个实现在只有一个客户端的时候可以执行得很好。 但是, 当多个客户端同时对同一个键进行这样的操作时, 就会产生竞争条件。举个例子, 如果客户端 A 和 B 都读取了键原来的值, 比如 10 , 那么两个客户端都会将键的值设为 11 , 但正确的结果应该是 12 才对。有了 WATCH , 我们就可以轻松地解决这类问题了:
WATCH mykey
val = GET mykey
val = val + 1
MULTI
SET mykey $val
EXEC
使用上面的代码, 如果在 WATCH 执行之后, EXEC 执行之前, 有其他客户端修改了 mykey 的值, 那么当前客户端的事务就会失败。 程序需要做的, 就是不断重试这个操作, 直到没有发生碰撞为止。这种形式的锁被称作乐观锁, 它是一种非常强大的锁机制。 并且因为大多数情况下, 不同的客户端会访问不同的键, 碰撞的情况一般都很少, 所以通常并不需要进行重试。
Redis支持的ACID
事务的ACID:
原子性(Atomicity) 原子性是指事务是一个不可分割的工作单位,事务中的操作要么都发生,要么都不发生。
一致性(Consistency) 事务前后数据的完整性必须保持一致。
隔离性(Isolation) 多个事务并发执行时,一个事务的执行不应影响其他事务的执行
持久性(Durability) 持久性是指一个事务一旦被提交,它对数据库中数据的改变就是永久性的,接下来即使数据库发生故障也不应该对其有任何影响
Redis的事务总是具有ACID中的一致性和隔离性,其他特性是不支持的。当服务器运行在AOF持久化模式下,并且appendfsync选项的值为always时,事务也具有持久性。
Redis 是单进程程序,并且它保证在执行事务时,不会对事务进行中断,事务可以运行直到执行完所有事务队列中的命令为止。因此,Redis 的事务是总是带有隔离性的。Redis中,单条命令是原子性执行的,但事务不保证原子性,且没有回滚。事务中任意命令执行失败,其余的命令仍会被执行。
Redis事务其他实现
Redis2.6开始redis-cli支持一种新的被称之为pipe mode的新模式用于执行大量数据插入工作。Redis是一种基于客户端-服务端模型以及请求/响应协议的TCP服务。这意味着通常情况下一个请求会遵循以下步骤:
Redis 管道技术可以在服务端未响应时,客户端可以继续向服务端发送请求,并最终一次性读取所有服务端的响应。
1、缓存雪崩
缓存雪崩是指缓存同一时间大面积的过期失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方案
2、缓存穿透
缓存穿透是指缓存和数据库中都没有的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方案
对于空间的利用到达了一种极致,那就是Bitmap和布隆过滤器(Bloom Filter)。 Bitmap: 典型的就是哈希表 缺点是,Bitmap对于每个元素只能记录1bit信息,如果还想完成额外的功能,恐怕只能靠牺牲更多的空间、时间来完成了。
Bitmap
参考:https://zhuanlan.zhihu.com/p/67920410
bitmap采用了一种映射机制,举个例子,假如有 1,3, 7,2, 5 这5个数字需要存放,正常情况下你需要5*4=20byte,但bitmap只需要1byte,bitmap是一个大的位数组,将所有位置为0。从第一个0开始数数,把对应数字的位置置为1,比如说第一个1那就是第2个位置置为1,第二个3就是把第4个位置置为1,依此论推…
1 => 0 1 0 0 0 0 0 0
3 => 0 0 0 1 0 0 0 0
7 => 0 0 0 0 0 0 0 1
2 => 0 0 1 0 0 0 0 0
5 => 0 0 0 0 0 1 0 0
Redis的Bitmap应用:
很多App都有一个签到功能,比如说连续签到7天或者30天给一些奖励,需求十分简单!作为后端,我们需要提供一个签到接口,然后记录用户签到的信息,比如用户uid,签到时间!如果使用传统关系型数据库,我们可能需要建一张签到表,大概有id、uid、createdTime等几个字段,当用户签到的时候新增一条记录就行!这种做法肯定是没问题的,但是如果网站每天有千万用户签到,那么这张表每天都会有千万条记录产生,数据的存储是问题!分库分表必不可少!
假如使用redis的bit操作,我们可以使用setbit,SETBIT key offset value
对指定的key的value的指定偏移(offset)的位置1或0 , 其中key我们可以设置为当天的年月日,offset是用户uid(这里暂时只考虑uid是纯数字的情况),value的话1表示已签到。比如说用户uid位12500的用户在20190501签到了,我们可以执行SETBIT 20190501 12500 1
,其它用户依此论推 。如果我们需要查询用户某天是否签到,只需要使用GETBIT 20190501 12500
,返回1表示已签到,0未签到。如果需要查询某天有多少人签到,可以使用BITCOUNT 20190501
。如果要统计连续7天签到的总人数的话可以使用bitop命令,比如bitop AND 7_dasy_sign 20190501 20190502 20190503 ... 20190507
。理论上讲,setbit的大小在0到2的32次方(最大使用512M内存)之间,即0~4294967296之间,也就说最多可以存储42亿用户的签到情况。和数据库相比,这种方式查询的效率非常高,并不会因为数据大而变慢,而且比较节省内存,操作上也不是太复杂。
布隆过滤器
就是引入了k(k>1)k(k>1)个相互独立的哈希函数,保证在给定的空间、误判率下,完成元素判重的过程。 它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。 Bloom-Filter算法的核心思想就是利用多个不同的Hash函数来解决“冲突”。 Hash存在一个冲突(碰撞)的问题,用同一个Hash得到的两个URL的值有可能相同。为了减少冲突,我们可以多引入几个Hash,如果通过其中的一个Hash值我们得出某元素不在集合中,那么该元素肯定不在集合中。只有在所有的Hash函数告诉我们该元素在集合中时,才能确定该元素存在于集合中。这便是Bloom-Filter的基本思想。 Bloom-Filter一般用于在大数据量的集合中判定某元素是否存在。
引用:https://www.cnblogs.com/cpselvis/p/6265825.html
布隆过滤器(Bloom Filter)的核心实现是一个超大的位数组和几个哈希函数。假设位数组的长度为m,哈希函数的个数为k
以上图为例,具体的操作流程:假设集合里面有3个元素{x, y, z},哈希函数的个数为3。首先将位数组进行初始化,将里面每个位都设置位0。对于集合里面的每一个元素,将元素依次通过3个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为1。查询W元素是否存在集合中的时候,同样的方法将W通过哈希映射到位数组上的3个点。如果3个点的其中有一个点不为1,则可以判断该元素一定不存在集合中。反之,如果3个点都为1,则该元素可能存在集合中。注意:此处不能判断该元素是否一定存在集合中,可能存在一定的误判率。可以从图中可以看到:假设某个元素通过映射对应下标为4,5,6这3个点。虽然这3个点都为1,但是很明显这3个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是1,这是误判率存在的原因。
3、缓存击穿
缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。和缓存雪崩不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。
解决方案
缓存热点key:
缓存中的一个Key(比如一个促销商品),在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
对缓存查询加锁,如果KEY不存在,就加锁,然后查DB入缓存,然后解锁;其他进程如果发现有锁就等待,然后等解锁后返回数据或者进入DB查询。
4、缓存预热
缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
解决方案
5、缓存降级
当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。
缓存降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。
在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:
服务降级的目的,是为了防止Redis服务故障,导致数据库跟着一起发生雪崩问题。因此,对于不重要的缓存数据,可以采取服务降级策略,例如一个比较常见的做法就是,Redis出现问题,不去数据库查询,而是直接返回默认值给用户。
6、热点数据和冷数据
热点数据,缓存才有价值。对于冷数据而言,大部分数据可能还没有再次访问到就已经被挤出内存,不仅占用内存,而且价值不大。
频繁修改的数据,看情况考虑使用缓存。对于热点数据,比如我们的某IM产品,生日祝福模块,当天的寿星列表,缓存以后可能读取数十万次。再举个例子,某导航产品,我们将导航信息,缓存以后可能读取数百万次。数据更新前至少读取两次,缓存才有意义。这个是最基本的策略,如果缓存还没有起作用就失效了,那就没有太大价值了。
那存不存在,修改频率很高,但是又不得不考虑缓存的场景呢?有!比如,这个读取接口对数据库的压力很大,但是又是热点数据,这个时候就需要考虑通过缓存手段,减少数据库的压力,比如我们的某助手产品的,点赞数,收藏数,分享数等是非常典型的热点数据,但是又不断变化,此时就需要将数据同步保存到Redis缓存,减少数据库压力。
sentinel,中文名是哨兵。哨兵是 redis 集群机构中非常重要的一个组件,主要有以下功能:
哨兵用于实现 redis 集群的高可用,本身也是分布式的,作为一个哨兵集群去运行,互相协同工作。
哨兵的核心知识
哈希槽:
Redis Cluster是一种服务端Sharding技术,3.0版本开始官方正式提供。Redis Cluster并没有使用一致性hash,而是采用slot(槽)的概念,集群一共分成16384个槽。将请求发送到任意节点,接收到请求的节点会将查询请求发送到正确的节点上执行。Redis集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。
方案说明
节点间的内部通信机制
在 redis cluster 架构下,每个 redis 要放开两个端口号,比如一个是 6379,另外一个就是 加1w 的端口号,比如 16379。16379 端口号是用来进行节点间通信的,也就是 cluster bus 的东西,cluster bus 的通信,用来进行故障检测、配置更新、故障转移授权。cluster bus 用了另外一种二进制的协议,gossip 协议,用于节点间进行高效的数据交换,占用更少的网络带宽和处理时间。
集群元数据的维护有两种方式:集中式、Gossip 协议。redis cluster 节点间采用 gossip 协议进行通信。
分布式寻址算法
优点
缺点
Redis Sharding是Redis Cluster出来之前,业界普遍使用的多Redis实例集群方法。其主要思想是采用哈希算法将Redis数据的key进行散列,通过hash函数,特定的key会映射到特定的Redis节点上。Java redis客户端驱动jedis,支持Redis Sharding功能,即ShardedJedis以及结合缓存池的ShardedJedisPool
优点
优势在于非常简单,服务端的Redis实例彼此独立,相互无关联,每个Redis实例像单服务器一样运行,非常容易线性扩展,系统的灵活性很强
缺点
客户端发送请求到一个代理组件,代理解析客户端的数据,并将请求转发至正确的节点,最后将结果回复给客户端
特征
业界开源方案
单机的 redis,能够承载的 QPS 大概就在上万到几万不等。对于缓存来说,一般都是用来支撑读高并发的。因此架构做成主从(master-slave)架构,一主多从,主负责写,并且将数据复制到其它的 slave 节点,从节点负责读。所有的读请求全部走从节点。这样也可以很轻松实现水平扩容,支撑读高并发。
redis replication -> 主从架构 -> 读写分离 -> 水平扩容支撑读高并发
redis replication 的核心机制
注意,如果采用了主从架构,那么建议必须开启 master node 的持久化,不建议用 slave node 作为 master node 的数据热备,因为那样的话,如果你关掉 master 的持久化,可能在 master 宕机重启的时候数据是空的,然后可能一经过复制, slave node 的数据也丢了。
另外,master 的各种备份方案,也需要做。万一本地的所有文件丢失了,从备份中挑选一份 rdb 去恢复 master,这样才能确保启动的时候,是有数据的,即使采用了后续讲解的高可用机制,slave node 可以自动接管 master node,但也可能 sentinel 还没检测到 master failure,master node 就自动重启了,还是可能导致上面所有的 slave node 数据被清空。
redis 主从复制的核心原理
当启动一个 slave node 的时候,它会发送一个 PSYNC 命令给 master node。如果这是 slave node 初次连接到 master node,那么会触发一次 full resynchronization 全量复制。此时 master 会启动一个后台线程,开始生成一份 RDB 快照文件,同时还会将从客户端 client 新收到的所有写命令缓存在内存中。RDB 文件生成完毕后, master 会将这个 RDB 发送给 slave,slave 会先写入本地磁盘,然后再从本地磁盘加载到内存中,接着 master 会将内存中缓存的写命令发送到 slave,slave 也会同步这些数据。
slave node 如果跟 master node 有网络故障,断开了连接,会自动重连,连接之后 master node 仅会复制给 slave 部分缺少的数据。
所有的slave节点数据的复制和同步都由master节点来处理,会照成master节点压力太大,使用一主两从结构来解决。
redis cluster,10 台机器,5 台机器部署了 redis 主实例,另外 5 台机器部署了 redis 的从实例,每个主实例挂了一个从实例,5 个节点对外提供读写服务,每个节点的读写高峰qps可能可以达到每秒 5 万,5 台机器最多是 25 万读写请求/s。
机器是什么配置?32G 内存+ 8 核 CPU + 1T 磁盘,但是分配给 redis 进程的是10g内存,一般线上生产环境,redis 的内存尽量不要超过 10g,超过 10g 可能会有问题。5 台机器对外提供读写,一共有 50g 内存。因为每个主实例都挂了一个从实例,所以是高可用的,任何一个主实例宕机,都会自动故障迁移,redis 从实例会自动变成主实例继续提供读写服务。
你往内存里写的是什么数据?每条数据的大小是多少?商品数据,每条数据是 10kb。100 条数据是 1mb,10 万条数据是 1g。常驻内存的是 200 万条商品数据,占用内存是 20g,仅仅不到总内存的 50%。目前高峰期每秒就是 3500 左右的请求量。
分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。
分区实现方案
Redis分区的缺点
预分片
既然Redis是如此的轻量(单实例只使用1M内存),为防止以后的扩容,最好的办法就是一开始就启动较多实例。即便你只有一台服务器,你也可以一开始就让Redis以分布式的方式运行,使用分区,在同一台服务器上启动多个实例。一开始就多设置几个Redis实例,例如32或者64个实例,对大多数用户来说这操作起来可能比较麻烦,但是从长久来看做这点牺牲是值得的。
这样的话,当你的数据不断增长,需要更多的Redis服务器时,你需要做的就是仅仅将Redis实例从一台服务迁移到另外一台服务器而已(而不用考虑重新分区的问题)。一旦你添加了另一台服务器,你需要将你一半的Redis实例从第一台机器迁移到第二台机器。
。。。
Redis实现分布式锁
Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系Redis中可以使用SETNX命令实现分布式锁。
当且仅当 key 不存在,将 key 的值设为 value。 若给定的 key 已经存在,则 SETNX 不做任何动作。SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写。
使用SETNX完成同步锁的流程及事项如下:
使用SETNX命令获取锁,若返回0(key已存在,锁已存在)则获取失败,反之获取成功。为了防止获取锁后程序出现异常,导致其他线程/进程调用SETNX命令总是返回0而进入死锁状态,需要为该key设置一个合理的过期时间。释放锁,使用DEL命令将锁数据删除
Redis 的并发竞争 Key 问题
所谓 Redis 的并发竞争 Key 的问题也就是多个系统同时对一个 key 进行操作,但是最后执行的顺序和我们期望的顺序不同,这样也就导致了结果的不同。
推荐一种方案:分布式锁(zookeeper 和 redis 都可以实现分布式锁)。基于zookeeper临时有序节点可以实现的分布式锁。大致思想为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。完成业务流程后,删除对应的子节点释放锁。在实践中,当然是从以可靠性为主。所以首推Zookeeper。
RedLock
参考:https://www.cnblogs.com/rgcLOVEyaya/p/RGC_LOVE_YAYA_1003days.html
Redis 官方站提出了一种权威的基于 Redis 实现分布式锁的方式名叫 Redlock,此种方式比原先的单节点的方法更安全。它可以保证以下特性:
保证缓存与数据库双写时的数据一致性
参考:https://zhuanlan.zhihu.com/p/37549923
缓存更新策略
1、先更新数据库,再更新缓存;
资源浪费:在一些大型的信息网站中(博客、贴吧),我们引入缓存主要是对热数据(请求频繁的)进行缓存,而这时候,如果很多用户对于冷数据(长时间没人访问,或者访问量很少)进行更新,然后再去更新缓存,这就造成了缓存资源的大量浪费(因为访问量少,导致这些缓存命中低,浪费缓存资源)。
脏数据:这是由于出现了并发操作的原因导致的,如:同时有两个请求A和B对数据进行了更新操作,由于网络原因,可能存在以下情况:
这就出现了A数据覆盖了B数据的情况,此时就产生了脏数据,如果没有缓存定时过期机制,此时的脏数据需要等待下一次的更新,才会对缓存进行更新,虽然用户看到数据出现问题,会再重新更新一次,但这已经有多了一次不必要的请求了,写请求量大的时候,容易造成众多不必要的更新请求。
适合场景
案例:个人博客、手册网站(w3cschool、菜鸟教程等)
2、先更新数据库,再删除缓存;
存在的问题:脏数据、缓存删除失败产生数据不一致性问题。
数据不一致性解决方法:
a、设置缓存的有效时间:会存在短时间内的旧数据。如果数据量太多,缓存有效时间短,容易发生一段时间内缓存大量失效,此时的数据库压力突然剧增,引发缓存雪崩现象。
b、引入消息队列系统 :更新数据库;删除缓存失败;将需要删除的Key发送到消息队列;隔断时间从消息队列中拉取要删除的key;继续删除,直至成功为止。
3、先删除缓存,再更新数据库;
存在的问题:脏数据。
缓存异步刷新
指数据库操作和写缓存不在一个操作步骤中,比如在分布式场景下,无法做到同时写缓存或需要异步刷新时候,作为一种补救措施。根据经验值确定合理的数据不一致时间,用户数据刷新同步的时间间隔。
Redis常见性能问题和解决方案
假如Redis里面有1亿个key,其中有10w个key是以某个固定的已知的前缀开头的,如果将它们全部找出来(keys 和 scan)
使用keys指令可以扫出指定模式的key列表。 如果这个redis正在给线上的业务提供服务,那使用keys指令会有什么问题? 这个时候你要回答redis关键的一个特性:redis的单线程的。keys指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。
这个时候可以使用scan指令,scan指令可以无阻塞的提取出指定模式的key列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys指令长。
SCAN 命令是一个基于游标的迭代器(cursor based iterator): SCAN 命令每次被调用之后, 都会向用户返回一个新的游标, 用户在下次迭代时需要使用这个新游标作为 SCAN 命令的游标参数, 以此来延续之前的迭代过程。当 SCAN 命令的游标参数被设置为 0 时, 服务器将开始一次新的迭代, 而当服务器向用户返回值为 0 的游标时, 表示迭代已结束。以下是一个 SCAN 命令的迭代过程示例:
redis 127.0.0.1:6379> scan 0
1) "17"
2) 1) "key:12"
2) "key:8"
3) "key:4"
4) "key:14"
5) "key:16"
6) "key:17"
7) "key:15"
8) "key:10"
9) "key:3"
10) "key:7"
11) "key:1"
redis 127.0.0.1:6379> scan 17
1) "0"
2) 1) "key:5"
2) "key:18"
3) "key:0"
4) "key:2"
5) "key:19"
6) "key:13"
7) "key:6"
8) "key:9"
9) "key:11"
使用Redis做过异步队列
使用list类型保存数据信息,rpush生产消息,lpop消费消息,当lpop没有消息时,可以sleep一段时间,然后再检查有没有信息,如果不想sleep的话,可以使用blpop, 在没有信息的时候,会一直阻塞,直到信息的到来。redis可以通过pub/sub主题订阅模式实现一个生产者,多个消费者,当然也存在一定的缺点,当订阅队列的消费者下线时,生产的消息会丢失。
组件启动时候,启动一个消费者进程订阅某个主题的redis list队列,lpop当队列中没有消息时,阻塞等待。生产者通过rpush往这个异步队列中生产某种格式消息。消费者者进程拿到消息进行消费。
Redis如何实现延时队列
参考:https://juejin.cn/post/6844903817713025032
延时任务是指需要在指定的未来的某个时间点自动触发。与之类似的场景还有:
延时任务的实现分为以下几步来实现:
(1) 将任务的执行时间作为score,要执行的任务数据作为value,存放在zset中; (2) 用一个进程定时查询zset的score分数最小的元素,可以用ZRANGEBYSCORE key -inf +inf limit 0 1 withscores命令来实现; (3) 如果最小的分数小于等于当前时间戳,就将该任务从队列中取出来执行,否则休眠一段时间后再查询。
redis的ZSET是通过跳跃表来实现的,复杂度为O(logN),N是存放在ZSET中元素的个数。用redis来实现可以依赖于redis自身的持久化来实现持久化,redis的集群来支持高并发和高可用。因此开发成本很小,可以做到很实时。
Redis回收进程如何工作的