1.python以三视图形式显示三维.nii格式医学图像
import nibabel as nib
from nibabel.viewers import OrthoSlicer3D
file = nib.load("path") #将.nii格式图像读入
OrthoSlicer3D(file.dataobj).show()
2.对图像进行裁剪(.nii格式)
import numpy as np
import nibabel as nib
file = nib.load("path") #将.nii格式图像读入
vol = file.get_data() #获取图像数据
vol = vol[ : , ; , : ] #冒号两边写裁剪的范围,几维就有几个冒号
affine = file.affine # afiine与变换之前保持同步
newvol = nib.NiftilImage(vol,affine)
nibsave(newvol,'path')#保存变换后的新图像
3.ANTs对图像进行配准
安装antspy
pip install https://github.com/ANTsX/ANTsPy/release/download/v0.1.4/antspy-0.1.4-cp36-cp36m-linux_X86_64.whl
使用ANTs中的syn配准(如果.nii是float64会报错,float32不会,未知原因。)
import ants
fixed = ants.image_read("path")
moving = ants.image_read("path")
SyN = ants.registration(fixed = fixed, moving = moving, typr_of_transform = 'SyN')
result = ants.apply_transforms(fixed = fixed, moving = moving, transformlist =
SyN['fwdtransforms'])
ants.image_write(result ,'path')
4.计算两图Dice
import numpy as np
import nibabel as nib
def DSC(pred,target)
smooth = 1e-5
m1 = pred.flatten()
m2 = target.flatten()
intersection = (m1*m2).sum()
return (2.*intersection+smooth)/(m1.sum()+m2.sum() + smooth)
def compute_label_dice(gt,pred)
cls_lst = [1,...,35]
dice_list = []
for cls in cls_lst
dice = DSC(gt == cls , pred == cls)
dice_lst.append(dice)
return np.mean(dice_lst)
file1 = nib.load("path")
file2 = nib.load("path")
vol1 = file1.get_data()
vol2 = file2.get_data()
dice = compute_label_dice(vol1.vol2)