PNN

  1. PNN,全称为Product-based Neural Network,认为在embedding输入到MLP之后学习的交叉特征表达并不充分,提出了一种product layer的思想,既基于乘法的运算来体现体征交叉的DNN网络结构,如下图:

    PNN_第1张图片

     

输出层 输出层很简单,将上一层的网络输出通过一个全链接层,经过sigmoid函数转换后映射到(0,1)的区间中,得到我们的点击率的预测值:

PNN_第2张图片

 

l2层 根据l1层的输出,经一个全链接层 ,并使用relu进行激活,得到我们l2的输出结果:

 

l1层 l1层的输出由如下的公式计算:

 

重点马上就要来了,我们可以看到在得到l1层输出时,我们输入了三部分,分别是lz,lp 和 b1,b1是我们的偏置项,这里可以先不管。lz和lp的计算就是PNN的精华所在了。我们慢慢道来:

Product Layer

product思想来源于,在ctr预估中,认为特征之间的关系更多是一种and“且”的关系,而非add"加”的关系。例如,性别为男且喜欢游戏的人群,比起性别男和喜欢游戏的人群,前者的组合比后者更能体现特征交叉的意义。

PNN_第3张图片

 

不同的g的选择使得我们有了两种PNN的计算方法,一种叫做Inner PNN,简称IPNN,一种叫做Outer PNN,简称OPNN。

你可能感兴趣的:(DL)