- 智慧运维与物联网技术在地铁车辆段的应用项目
罗博深
本文还有配套的精品资源,点击获取简介:随着物联网技术的广泛应用,智慧运维系统通过传感器、大数据分析、云计算等技术集成,提升了地铁车辆段的运维效率和安全性。该系统可以实时监控设备状态、预测故障、提供智能决策支持、优化维护策略,并降低运营成本,同时提高乘客安全。其应用拓展至整个地铁线路,乃至与城市交通系统协同,展现了智慧运维对公共交通系统现代化的贡献。1.物联网技术基础与应用物联网(Interneto
- 智能编程新时代:DeepSeek加持下的开发工具革新
inscode_013
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:智能编程新时代:DeepSeek加持下的开发工具革新在当今快速发展的科技领域,编程工具的智能化已经成为不可阻挡的趋势。随着人工智能技术的不断进步,开发者们迎来了前所未有的机遇和挑战。其中,集成DeepSeek模型的AI开发工具,正以其强大的功能和便捷的操作,引领着编程方式的革命性变革。本文将探讨这种创新工具的应用场景
- 智能编程新时代:DeepSeek加持下的开发利器
inscode_099
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE智能编程新时代:DeepSeek加持下的开发利器在当今快速发展的科技时代,编程工具的智能化已经成为不可阻挡的趋势。随着人工智能技术的不断进步,开发者们不再满足于传统的IDE(集成开发环境),而是渴望更加智能、高效的开发工具。在这种背景下,一款集成了DeepSeek-V3模型的AI开发工具应运而生,它不仅能够大幅提升开发效率
- 智能化编程新时代,DeepSeek加持下的开发革命
ObsidianRaven13
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:智能化编程新时代,DeepSeek加持下的开发革命随着人工智能技术的飞速发展,编程领域正迎来一场前所未有的变革。从传统的手动编码到如今的智能辅助开发,这一过程不仅极大地提升了开发效率,还让编程变得更加简单和高效。在众多新兴工具中,基于DeepSeek模型的智能编程助手正在成为开发者的新宠。今天,我们将探讨这种工具如何
- 智能化开发新时代:DeepSeek加持下的编程革命
MoonbeamOwl67
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:智能化开发新时代:DeepSeek加持下的编程革命在当今快速发展的科技时代,软件开发已经成为推动社会进步的重要动力。然而,对于许多开发者而言,编写高质量的代码仍然是一项充满挑战的任务。从复杂的算法设计到繁琐的调试过程,每一个环节都需要耗费大量的时间和精力。而随着人工智能技术的迅猛发展,一种全新的编程方式正在悄然改变这
- 基于AT89C52单片机的多功能万年历温度计设计
七月小卖铺
单片机单片机嵌入式硬件
点击链接获取Keil源码与ProjectBackups仿真图:https://download.csdn.net/download/qq_64505944/89452374?spm=1001.2014.3001.5503C源码+仿真图+毕业设计+实物制作步骤+08AT89C52(与AT89S52、AT89C52通用,可任选)单片机、LCD液晶显示,DS1302时钟芯片、DS18B20温度传感器,蜂
- python 人工智能实战案例
2401_86114612
pygamepythonjava
大家好,今天我们要分享,python编程人工智能小例子python人工智能100例子,一起探索吧!1.背景介绍概述在这个世纪,人类已经处于数字化的时代,而这也让很多其他行业都进入了数字化领域python列表有哪些基本操作,python列表功能很重要吗。其中包括游戏行业。游戏行业的蓬勃发展促使机器学习的产生,通过计算机能够进行高效率地模拟人类的学习、决策过程,不断升级提升人类的能力。游戏领域中的AI
- Python 在人工智能领域的实际6大案例
Solomon_肖哥弹架构
人工智能机器学习python
Python作为一种功能强大且易于学习的编程语言,在人工智能(AI)领域得到了广泛的应用。从机器学习到深度学习,从自然语言处理到计算机视觉,Python提供了丰富的库和框架,使得开发者能够快速实现各种AI应用。本文将通过多个实际案例,展示Python在人工智能领域的强大功能和应用前景。二、案例一:手写数字识别(MNIST)1.背景介绍手写数字识别是机器学习领域的经典入门项目,MNIST数据集包含了
- 基于人工智能的智能视频内容分析系统
小彭律师
python
基于人工智能的智能视频内容分析系统系统功能1.视频数据预处理降噪与滤波:去除视频画面中的噪点和干扰画质增强:调整亮度、对比度和色彩平衡关键帧提取:减少数据量,提取关键信息2.目标识别检测基于深度学习模型(YOLO、FasterR-CNN等)识别多种目标类型(人、车辆、物品等)适应不同光照、角度和遮挡情况输出目标位置、类别和置信度3.行为分析研判基于时序模型(LSTM、3D-CNN等)分析目标动作规
- AGI的学习与适应能力
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
“AGI的学习与适应能力”1.背景介绍1.1人工通用智能(AGI)的定义人工通用智能(ArtificialGeneralIntelligence,AGI)是指能够像人类一样具有广泛的理解和学习能力、可以完成多种复杂任务的人工智能系统。与狭义人工智能(NarrowAI)专注于特定领域和特定任务不同,AGI旨在模拟人类整体认知能力,包括感知、推理、学习、计划、创造力和自我意识等。1.2AGI的重要性和
- Deepseek 使用攻略
隔窗听雨眠
人工智能
人工智能飞速发展的时代,新的技术和工具不断涌现,Deepseek便是其中备受瞩目的存在。它以强大的功能和出色的表现,吸引了众多用户的关注。今天,就让我们一起来深入了解一下Deepseek究竟是什么,以及如何使用它。一、什么是DeepseekDeepseek(深度求索)是一家位于杭州的人工智能公司,同时也是一系列大语言模型的统称。它由中国对冲基金高毅资产创立并提供支持,其模型均以开源形式发布。Dee
- 【prompt实战】知乎问题解答专家
姚瑞南
prompt实战应用案例prompt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)#Role:知乎问题解答分类专家##Profile:你是一个知乎问题解答分类专家,主要帮助用户解答各类领域专业问题,包括但不限于金融领域、职场问题、互联网领域、科技领域、人工智能领域
- 基于群智能算法的三维无线传感网络覆盖优化数学模型-可以使用群智能算法直接调用进行优化,完整MATLAB代码
算法小狂人
算法应用matlabphp开发语言
1.1三维覆盖模型由于节点随机抛洒,而传感器节点的分布情况会影响网络覆盖率,以RcovR_{\text{cov}}Rcov作为覆盖率评价标准。在三维覆盖区域中,传感器节点的覆盖区域是某一半径确定的球。在三维监测区域中随机抛洒NNN个传感器节点,形成节点集S={s1,s2,s3,⋯ ,sN}S=\{s_1,s_2,s_3,\cdots,s_N\}S={s1,s2,s3,⋯,sN},第iii个节点的坐
- RAW图与BAYER图异同
越甲八千
【opencv学习】【海康相机视觉案例】计算机视觉人工智能
RAW图是一种未经处理、未压缩的图像文件格式,它记录了图像传感器捕捉到的原始数据,包含了拍摄时的大量图像信息。下面从多个方面详细介绍RAW图:参考:B站大清光学定义与基本概念定义:RAW文件是图像传感器将捕捉到的光源信号转化为数字信号的原始数据。相机在拍摄时,光线通过镜头到达图像传感器,传感器将光线的强度、颜色等信息转化为电信号,再经过模数转换变成数字数据,RAW格式直接保存这些原始数据,而不经过
- DeepSeek:全栈开发者视角下的AI革命者
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3人工智能
DeepSeek:全栈开发者视角下的AI革命者写在前面随着人工智能(AI)技术的不断进步,AI已经成为各行各业创新的核心动力。从自动驾驶到智能制造,再到自然语言处理和图像识别,AI正在逐渐渗透并改变着我们的生活和工作方式。DeepSeek,作为AI领域的新兴技术,凭借其独特的技术架构和颠覆性的创新理念,成为了全栈开发者关注的焦点。本文将从全栈开发者的角度出发,详细解析DeepSeek的诞生、技术架
- Assembly语言的自然语言处理
花韵婷
包罗万象golang开发语言后端
Assembly语言在自然语言处理中的应用引言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能的一个重要分支,致力于实现计算机与人类语言之间的互动。随着计算能力的提升以及大数据的蓬勃发展,NLP在各个领域的应用如火如荼。从语音识别、机器翻译到情感分析等,NLP正在改变我们与信息之间的互动方式。不过,当前主流的NLP研究通常是用高级编程语言(如Python、Ja
- 大语言模型原理与工程实践:大语言模型强化对齐
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:大语言模型强化对齐作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的迅猛发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等,在自然语言处理(NLP)领域取得了显著的突破。这些模型在问答、翻译、文本生成等方面展现出惊人的能力,但同时也引发了
- 从图形处理到通用计算的进化之路
绿算技术
GPU架构介绍科技gpu算力
图形处理单元,作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能、科学计算、游戏娱乐等领域。本文将深入探讨GPU架构的演变历程、核心组件以及其在不同应用场景中的优势。GPU架构的演变:从固定功能到可编程流水线早期的GPU采用固定功能流水线架构,专为图形渲染任务而设计。这种架构将图形渲染流程划分为一系列固定的阶段,例如顶点处理、光栅化、纹
- 高效快速教你deepseek如何进行本地部署并且可视化对话
chatgpt
随着最近一个新的人工智能deepseek的爆火,很多大佬都开始了在本地进行deepseek的部署操作,并且离线也可以使用,这里的话我就一步一步带你们部署本地的deepseek,说实话这个人工智能的实力不亚于openai的gpt安装ollama我们需要先安装ollama,安装地址ollama,我们直接点击下载,我们在下载的时候尽量使用我们的谷歌浏览器,有魔法的最好带上魔法,不然安装的时候可能会出问题
- useblackbox黑箱AI编码助理
百态老人
python开发语言
黑箱AI是一个人工智能的编码助理可以让代码快10倍。它使您能够把任何问题变成代码和功能,如从任何视频提取代码和代码自动完成。它有以下几个特点:可以从视频、图片、PDF等格式中复制代码。可以将任何问题转换成代码。可以快速找到任何代码片段,并开始编码。支持20多种编程语言的代码自动补全。有Chrome扩展和VSCode扩展。这个网站有不同的收费方案,根据你需要的功能和使用量而定。它有以下几种选择:好开
- 大模型火爆 2025:LLaMA、Qwen、DeepSeek 核心原理+就业秘籍,快速入门 AI 工程师
weixin_40941102
llama人工智能
1.大模型核心原理:从零开始理解AI模型这些是大型语言模型(LLMs)的核心技术,适合初学者逐步深入学习。以下是详细拆解,让小白也能掌握:LLaMA系列模型核心原理详解:什么是LLaMA?:LLaMA是一个基于人工智能的语言模型,像一个超级聪明的聊天机器人,能理解和生成人类语言。它由Meta公司开发,类似ChatGPT,但更开源、灵活。核心原理:Transformer架构:想象一个工厂流水线,LL
- 【AI热点】MCP协议深度洞察报告
碣石潇湘无限路
人工智能php开发语言
摘要人工智能技术飞速发展,大型语言模型(LLM)如何高效、安全地利用外部数据和工具成为关键问题。模型上下文协议(ModelContextProtocol,简称MCP)是一种由Anthropic于2024年底提出的开放标准协议。它通过统一的客户端-服务器架构,为AI应用与文件系统、数据库、第三方API等外部资源之间提供标准化、安全的双向通信接口。本文将深入解析MCP协议的基本概念和背景、架构设计(通
- ROS实践(五)机器人自动导航(robot_navigation)
简约少年
ROS机器人导航navigation
目录一、知识点1.定位2.路径规划(1)全局路径规划(2)局部路径规划3.避障二、常用工具和传感器三、相关功能包1.move_base(决策规划)2.amcl(定位)3.costmap_2d(代价地图)4.global_planner(全局规划器)5.local_planner(局部规划器)6.map_server(地图)四、导航流程框架五、navigation导航实验1.前提准备2.实验步骤六、
- 基于6自由度搬运机器人完成单关节伺服控制实现的详细步骤及示例代码
max500600
机器人机器人
以下是基于6自由度搬运机器人完成单关节伺服控制实现的详细步骤及示例代码:1.系统概述单关节伺服控制是指对机器人的单个关节进行精确的位置、速度或力矩控制。在6自由度搬运机器人中,每个关节通常由伺服电机驱动,通过反馈传感器(如编码器)获取关节的实际位置,然后控制器根据期望位置与实际位置的误差来调整电机的输出,以实现精确控制。2.硬件准备6自由度搬运机器人:包含6个可独立运动的关节,每个关节由伺服电机驱
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 焊接机器人与线激光视觉系统搭配的详细教程
自动化专业爱好者
机器人opencv人工智能
以下是关于焊接机器人与线激光视觉系统搭配的详细教程,包含核心程序框架、调参方法及源码实现思路。本文综合了多个技术文档与专利内容,结合工业应用场景进行系统化总结。一、系统硬件配置与视觉系统搭建1.硬件组成焊接机器人系统通常由以下模块构成:线激光视觉传感器:用于发射线激光并采集焊缝图像(如英莱科技PF系列传感器,支持4K视频监控与微间隙焊缝检测)。机器人本体与焊枪:需支持外部轴控制,传感器通过夹具安装
- AI大模型学习路线及相关资源推荐
python游乐园
学习资源学习PythonAIAI编程人工智能
哈喽,大家好!本文为大家带来AI大模型学习路线及相关资源推荐,这对于学习掌握AI大模型很有帮助呦,希望大家多多点赞收藏~感谢~~1AI大模型的基础信息1.1什么是AI大模型AI大模型,即人工智能大型模型,是一种基于深度学习技术,具有海量参数、强大算力支持、能够处理和生成复杂数据的人工智能模型。1.2AI大模型的主要特点规模庞大:AI大模型通常包含海量的参数。例如,谷歌的BERT模型在最初发布时就有
- 3D FFT在波束形成中的详细解释
DuHz
算法信息与通信信号处理
3DFFT在波束形成中的详细解释1.引言在雷达、声呐和无线通信等领域,为了从空间中获取目标或信号的方向信息,通常需要用到波束形成(Beamforming)技术。波束形成可以理解为一种通过数字信号处理手段,将天线阵列(或传感器阵列)接收的多路信号进行加权和,形成对特定方向(或多个方向)的增强或抑制,从而实现对目标/信号的方位估计与检测的技术。1.11D,2D,和3D波束形成1D波束形成通常针对线阵(
- 模型蒸馏:从复杂到精简,AI技术的“瘦身”秘籍
lmtealily
人工智能
引言在人工智能的浪潮中,大型模型如BERT、GPT系列等在自然语言处理(NLP)、计算机视觉(CV)等领域取得了显著的成果。然而,这些“庞然大物”通常拥有数十亿甚至数千亿个参数,计算和存储成本极高,难以部署到资源受限的设备上。为了解决这一问题,模型蒸馏技术应运而生。模型蒸馏是一种将大型复杂模型的知识迁移到小型简单模型的技术,旨在保持高性能的同时大幅减少模型的参数量和计算复杂度。本文将带你深入了解模
- 【图像处理】ISP(Image Signal Processor) 图像处理器的用途和工作原理?
AndrewHZ
图像处理基石图像处理智能手机影像系统算法深度学习人工智能ISP
ISP(图像信号处理器)是数字影像设备的“视觉大脑”,负责将传感器捕获的原始电信号转化为我们看到的高清图像。以下从用途和工作原理两方面通俗解析:一、ISP的核心用途:让照片“更像眼睛看到的”提升画质:降噪:去除暗光下的噪点(如手机夜景模式,通过多帧合成+算法抑制噪点)。色彩还原:校正传感器偏色(例如索尼传感器常偏黄,ISP通过白平衡算法还原真实色彩)。动态范围优化:保留高光和暗部细节(类似HDR,
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。