2014.2.13 19:23
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
Solution:
The Eight Queens problem is a typical model for backtracking algorithm.
For any pair of queens, their difference in x and y coordinates mustn't be 0 or equal, that's on the same row, column or diagonal line.
The code is short and self-explanatory, please see for yourself.
Total time complexity is O(n!). Space complexity is O(n!) as well, which comes from local parameters in recursive function calls.
Accepted code:
1 // 1CE, 1WA, 1AC, try to make the code shorter, it'll help you understand it better. 2 class Solution { 3 public: 4 vector<vector<string> > solveNQueens(int n) { 5 a = nullptr; 6 res.clear(); 7 if (n <= 0) { 8 return res; 9 } 10 11 a = new int[n]; 12 solveNQueensRecursive(0, a, n); 13 delete[] a; 14 15 return res; 16 } 17 private: 18 int *a; 19 vector<vector<string> > res; 20 21 void solveNQueensRecursive(int idx, int a[], const int &n) { 22 if (idx == n) { 23 // one solution is found 24 addSingleResult(a, n); 25 return; 26 } 27 28 int i, j; 29 // check if the current layout is valid. 30 for (i = 0; i < n; ++i) { 31 a[idx] = i; 32 for (j = 0; j < idx; ++j) { 33 if (a[j] == a[idx] || myabs(idx - j) == myabs(a[idx] - a[j])) { 34 break; 35 } 36 } 37 if (j == idx) { 38 // valid layout. 39 solveNQueensRecursive(idx + 1, a, n); 40 } 41 } 42 } 43 44 void addSingleResult(const int a[], int n) { 45 vector<string> single_res; 46 char *str = nullptr; 47 48 str = new char[n + 1]; 49 int i, j; 50 for (i = 0; i < n; ++i) { 51 for (j = 0; j < n; ++j) { 52 str[j] = '.'; 53 } 54 str[j] = 0; 55 str[a[i]] = 'Q'; 56 single_res.push_back(string(str)); 57 } 58 59 res.push_back(single_res); 60 single_res.clear(); 61 delete []str; 62 } 63 64 int myabs(const int x) { 65 return (x >= 0 ? x : -x); 66 } 67 };