个人主页:互联网阿星
格言:选择有时候会大于努力,但你不努力就没得选
作者简介:大家好我是互联网阿星,和我一起合理使用Python,努力做时间的主人
如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦
行业资料:PPT模板、简历模板、行业经典书籍PDF
面试题库:历年经典、热乎的大厂面试真题,持续更新中…
学习资料:含Python基础、爬虫、数据分析、算法等学习视频和文档
Tips:以上资料·阿星已备好
>>戳我,空投直达
Pandas 是一个开源的第三方 Python 库,从 Numpy 和 Matplotlib 的基础上构建而来,享有数据分析“三剑客之一”的盛名(NumPy、Matplotlib、Pandas)。Pandas 已经成为 Python 数据分析的必备高级工具,它的目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。
Pandas 这个名字来源于面板数据(Panel Data)与数据分析(data analysis)这两个名词的组合。在经济学中,Panel Data 是一个关于多维数据集的术语。Pandas 最初被应用于金融量化交易领域,现在它的应用领域更加广泛,涵盖了农业、工业、交通等许多行业。
Pandas 最初由 Wes McKinney(韦斯·麦金尼)于 2008 年开发,并于 2009 年实现开源。目前,Pandas 由 PyData 团队进行日常的开发和维护工作。在 2020 年 12 月,PyData 团队公布了最新的 Pandas 1.20 版本 。
在 Pandas 没有出现之前,Python 在数据分析任务中主要承担着数据采集和数据预处理的工作,但是这对数据分析的支持十分有限,并不能突出 Python 简单、易上手的特点。Pandas 的出现使得 Python 做数据分析的能力得到了大幅度提升,它主要实现了数据分析的五个重要环节:
Pandas 主要包括以下几个特点:
上述知识点将在后续学习中为大家一一讲解。
与其它语言的数据分析包相比,Pandas 具有以下优势:
我们知道,构建和处理二维、多维数组是一项繁琐的任务。Pandas 为解决这一问题, 在 ndarray 数组(NumPy 中的数组)的基础上构建出了两种不同的数据结构,分别是 Series(一维数据结构)DataFrame(二维数据结构):
下面对上述数据结构做简单地的说明:
数据结构 | 维度 | 说明 |
---|---|---|
Series | 1 | 该结构能够存储各种数据类型,比如字符数、整数、浮点数、Python 对象等,Series 用 name 和 index 属性来描述 数据值。Series 是一维数据结构,因此其维数不可以改变。 |
DataFrame | 2 | DataFrame 是一种二维表格型数据的结构,既有行索引,也有列索引。行索引是 index,列索引是 columns。 在创建该结构时,可以指定相应的索引值。 |
由于上述数据结构的存在,使得处理多维数组数任务变的简单。
阿星后面也会对上述数据结构做详细讲解,持续关注噢。
还需要注意,在 Pandas 0.25 版本后,Pamdas 废弃了 Panel 数据结构,阿星在后面也会讲到。
Pandas是什么丨Pandas数据分析基础(1)
就到这了如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦
学习资料:含Python基础、爬虫、数据分析、算法等学习视频和文档
行业资料:添加即可领取PPT模板、简历模板、行业经典书籍PDF
面试题库:历年经典,热乎的大厂面试真题,持续更新中…
资料已备好,戳我文末名片领…√