首先下载mindspore,参考官网[MindSpore官网]
硬件平台为Ascend、GPU或CPU。
参考MindSpore安装指南,完成MindSpore的安装。 MindArmour与MindSpore的版本需保持一致。
其余依赖请参见setup.py。
可以采用pip安装或者源码编译安装两种方式。
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/{version}/MindArmour/any/mindarmour-{version}-py3-none-any.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple
在联网状态下,安装whl包时会自动下载MindArmour安装包的依赖项(依赖项详情参见setup.py),其余情况需自行安装。
{version}
表示MindArmour版本号,例如下载1.3.0版本MindArmour时,{version}
应写为1.3.0。
从Gitee下载源码。
git clone https://gitee.com/mindspore/mindarmour.git
在源码根目录下,执行如下命令编译并安装MindArmour。
cd mindarmour python setup.py install
执行如下命令,如果没有报错No module named 'mindarmour'
,则说明安装成功。
python -c 'import mindarmour'
具体操作如下:
如图,最开始没有安装,显示没有mindarmour库
pip命令直接安装。
输入enter之后,没有错误报告,安装正确。
进入python环境,安装正确。
那我们跑一下测试玩玩。
刚一开始就报错啦。没事,我们看看信息。
貌似这,暂时CPU还跑不了。
“got device target GPU”。但是仔细分析,我们发现前面这句“support type cpu”。
我们再结合报错信息,只用修改代码中的target即可。
MindSpore的兼容性还是很强的,
稍微调试就好。
果不其然,搞成了target="CPU"就可以了
这就真不错。
经过三轮训练,精确度已经达到97%了
还没玩够,那我们在gpu上再玩一遍
(差点都忘了自己创建的环境叫什么了,原来叫mindspore1.5-gpu)
运行的时候,莫名奇妙出了些小故障,难道python命令出问题了?
原来是c盘满了,我把cuda卸了。看来寒假得重新加一块存储卡...那寒假再跟大家写gpu版本的吧。
1、安装Jupyter pip install jupyter
2、安装pycharm专业版,然后开始
以MNIST为示范数据集,自定义的简单模型作为被攻击模型。
import os import numpy as np from scipy.special import softmax from mindspore import dataset as ds from mindspore import dtype as mstype import mindspore.dataset.vision.c_transforms as CV import mindspore.dataset.transforms.c_transforms as C from mindspore.dataset.vision import Inter import mindspore.nn as nn from mindspore.nn import SoftmaxCrossEntropyWithLogits from mindspore.common.initializer import TruncatedNormal from mindspore import Model, Tensor, context from mindspore.train.callback import LossMonitor from mindarmour.adv_robustness.attacks import FastGradientSignMethod from mindarmour.utils import LogUtil from mindarmour.adv_robustness.evaluations import AttackEvaluate context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") LOGGER = LogUtil.get_instance() LOGGER.set_level("INFO") TAG = 'demo'
下载文件的时候,会报不信任http,没关系,不用管。
注意,在CPU上运行,设置为target="CPU"
利用MindSpore的dataset提供的MnistDataset
接口加载MNIST数据集。
# generate dataset for train of test def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1, sparse=True): """ create dataset for training or testing """ # define dataset ds1 = ds.MnistDataset(data_path) # define operation parameters resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images if not sparse: one_hot_enco = C.OneHot(10) ds1 = ds1.map(operations=one_hot_enco, input_columns="label", num_parallel_workers=num_parallel_workers) type_cast_op = C.TypeCast(mstype.float32) ds1 = ds1.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) ds1 = ds1.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) ds1 = ds1.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) ds1 = ds1.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 ds1 = ds1.shuffle(buffer_size=buffer_size) ds1 = ds1.batch(batch_size, drop_remainder=True) ds1 = ds1.repeat(repeat_size) return ds1
这里以LeNet模型为例,您也可以建立训练自己的模型。
定义LeNet模型网络。
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): return TruncatedNormal(0.02) class LeNet5(nn.Cell): """ Lenet network """ def __init__(self): super(LeNet5, self).__init__() self.conv1 = conv(1, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16*5*5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x
训练LeNet模型。利用上面定义的数据加载函数generate_mnist_dataset
载入数据。
mnist_path = "../common/dataset/MNIST/" batch_size = 32 # train original model ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"), batch_size=batch_size, repeat_size=1, sparse=False) net = LeNet5() loss = SoftmaxCrossEntropyWithLogits(sparse=False) opt = nn.Momentum(net.trainable_params(), 0.01, 0.09) model = Model(net, loss, opt, metrics=None) model.train(10, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=False)
以下是训练模型的结果
# 2. get test data ds_test = generate_mnist_dataset(os.path.join(mnist_path, "test"), batch_size=batch_size, repeat_size=1, sparse=False) inputs = [] labels = [] for data in ds_test.create_tuple_iterator(): inputs.append(data[0].asnumpy().astype(np.float32)) labels.append(data[1].asnumpy()) test_inputs = np.concatenate(inputs) test_labels = np.concatenate(labels)
测试模型。
# prediction accuracy before attack net.set_train(False) test_logits = net(Tensor(test_inputs)).asnumpy() tmp = np.argmax(test_logits, axis=1) == np.argmax(test_labels, axis=1) accuracy = np.mean(tmp) LOGGER.info(TAG, 'prediction accuracy before attacking is : %s', accuracy)
测试结果中分类精度达到了97%。
调用MindArmour提供的FGSM接口(FastGradientSignMethod)。
# attacking # get adv data attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss) adv_data = attack.batch_generate(test_inputs, test_labels) # get accuracy of adv data on original model adv_logits = net(Tensor(adv_data)).asnumpy() adv_proba = softmax(adv_logits, axis=1) tmp = np.argmax(adv_proba, axis=1) == np.argmax(test_labels, axis=1) accuracy_adv = np.mean(tmp) LOGGER.info(TAG, 'prediction accuracy after attacking is : %s', accuracy_adv) attack_evaluate = AttackEvaluate(test_inputs.transpose(0, 2, 3, 1), test_labels, adv_data.transpose(0, 2, 3, 1), adv_proba) LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class()) LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_lp_distance()) LOGGER.info(TAG, 'The average structural similarity between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_ssim())
攻击结果如下:
prediction accuracy after attacking is : 0.052083 mis-classification rate of adversaries is : 0.947917 The average confidence of adversarial class is : 0.803375 The average confidence of true class is : 0.042139 The average distance (l0, l2, linf) between original samples and adversarial samples are: (1.698870, 0.465888, 0.300000) The average structural similarity between original samples and adversarial samples are: 0.332538
结果如下。
对模型进行FGSM无目标攻击后,模型精度有11%,误分类率高达89%,成功攻击的对抗样本的预测类别的平均置信度(ACAC)为 0.721933,成功攻击的对抗样本的真实类别的平均置信度(ACTC)为 0.05756182,同时给出了生成的对抗样本与原始样本的零范数距离、二范数距离和无穷范数距离,平均每个对抗样本与原始样本间的结构相似性为0.5708779。
NaturalAdversarialDefense(NAD)是一种简单有效的对抗样本防御方法,使用对抗训练的方式,在模型训练的过程中构建对抗样本,并将对抗样本与原始样本混合,一起训练模型。随着训练次数的增加,模型在训练的过程中提升对于对抗样本的鲁棒性。NAD算法使用FGSM作为攻击算法,构建对抗样本。
调用MindArmour提供的NAD防御接口(NaturalAdversarialDefense)。
from mindarmour.adv_robustness.defenses import NaturalAdversarialDefense # defense net.set_train() nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt, bounds=(0.0, 1.0), eps=0.3) nad.batch_defense(test_inputs, test_labels, batch_size=32, epochs=10) # get accuracy of test data on defensed model net.set_train(False) test_logits = net(Tensor(test_inputs)).asnumpy() tmp = np.argmax(test_logits, axis=1) == np.argmax(test_labels, axis=1) accuracy = np.mean(tmp) LOGGER.info(TAG, 'accuracy of TEST data on defensed model is : %s', accuracy) # get accuracy of adv data on defensed model adv_logits = net(Tensor(adv_data)).asnumpy() adv_proba = softmax(adv_logits, axis=1) tmp = np.argmax(adv_proba, axis=1) == np.argmax(test_labels, axis=1) accuracy_adv = np.mean(tmp) attack_evaluate = AttackEvaluate(test_inputs.transpose(0, 2, 3, 1), test_labels, adv_data.transpose(0, 2, 3, 1), adv_proba) LOGGER.info(TAG, 'accuracy of adv data on defensed model is : %s', np.mean(accuracy_adv)) LOGGER.info(TAG, 'defense mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class())
在CPU上跑起来了,我已经听到了风扇的声音!
每次跑深度学习模型,都能够听见散热扇呼啸~
数秒后,风扇声音降低,准备查看结果。
accuracy of TEST data on defensed model is : 0.981270 accuracy of adv data on defensed model is : 0.813602 defense mis-classification rate of adversaries is : 0.186398 The average confidence of adversarial class is : 0.653031 The average confidence of true class is : 0.184980
使用NAD进行对抗样本防御后,模型对于对抗样本的误分类率降至18%,模型有效地防御了对抗样本。同时,模型对于原来测试数据集的分类精度达98%。
与官网数据对比:
accuracy of TEST data on defensed model is : 0.974259 accuracy of adv data on defensed model is : 0.856370 defense mis-classification rate of adversaries is : 0.143629 The average confidence of adversarial class is : 0.616670 The average confidence of true class is : 0.177374
使用NAD进行对抗样本防御后,模型对于对抗样本的误分类率从95%降至14%,模型有效地防御了对抗样本。同时,模型对于原来测试数据集的分类精度达97%。
亲爱的朋友,我已将本文中MindArmour的实操代码开源到gitee,代码已经在CPU上调试通过,欢迎大家下载使用,亲手调试后会有更加深入的理解。
链接:MindSporeArmour: Show details of how to use MindSpore Armour.