CUDA模式下,当然也可以cpu模式下
import tensorwatch as tw
dummy_input = torch.randn(1, 1, 32, 32, device='cuda')
tw_graph = tw.draw_model(sosnet32, dummy_input)
tw_graph.save("./mode_1.pdf")
import hiddenlayer as hl
from hiddenlayer import transforms as ht
dummy_input = torch.randn(1, 1, 32, 32, device='cuda')
hl_graph = hl.build_graph(sosnet32, dummy_input)
hl_graph.theme = hl.graph.THEMES["blue"].copy()
hl_graph.save("./model_2.pdf")
下面是我之前学习时的例子:
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from efficientnet_pytorch import EfficientNet
from efficientnet_pytorch import utils
from torchsummary import summary
from torchstat import stat
from tensorboardX import SummaryWriter
writer = SummaryWriter('log')
from pytorchcv.model_provider import get_model as ptcv_get_model
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
output1 = torch.nn.functional.log_softmax(output, dim=1)
loss = F.nll_loss(output1, target)
#loss = F.l1_loss(output, target)
loss.backward()
optimizer.step()
#new ynh
#每10个batch画个点用于loss曲线
if batch_idx % 10 == 0:
niter = epoch * len(train_loader) + batch_idx
writer.add_scalar('Train/Loss', loss.data, niter)
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader, epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
output1 = torch.nn.functional.log_softmax(output, dim=1)
test_loss += F.nll_loss(output1, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
# new ynh
writer.add_scalar('Test/Accu', test_loss, epoch)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=10, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist', train=True, download=True,
transform=transforms.Compose([
transforms.Resize((224), interpolation=2),
transforms.Grayscale(3),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist', train=False, transform=transforms.Compose([
transforms.Resize((224), interpolation=2),
transforms.Grayscale(3),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
blocks_args, global_params = utils.get_model_params('efficientnet-b0', override_params=None)
#model = EfficientNet.from_pretrained('efficientnet-b0').to(device)#.cuda()
#model = EfficientNet(blocks_args, global_params)#.to(device) # .cuda()
#dummy_input = torch.rand(1, 3, 224, 224)
#writer.add_graph(model, (dummy_input,))
#print(model)
# cp resnet18-0982-0126861b.pth ~/.torch/models
model = ptcv_get_model("efficientnet_b1", pretrained=False).cuda()
dummy_input = torch.randn(1, 3, 224, 224, device='cuda')
torch.onnx.export(model, dummy_input, "./efficientnet_b0.onnx", verbose=True)
#stat(model, (3, 224, 224))
#model.to(device)
#summary(model, (3, 224, 224))
import hiddenlayer as hl
from hiddenlayer import transforms as ht
# no cuda()
input = torch.zeros([1, 3, 224, 224], device='cuda')
hl_graph = hl.build_graph(model, input)
hl_graph.theme = hl.graph.THEMES["blue"].copy()
#hl_graph.save("/home/boyun/PycharmProjects/EfficientNet-PyTorch/pytorch_resnet_bloks.pdf")
dot = hl_graph.build_dot()
dot.attr("graph", rankdir="TD") # Topdown
dot.format = "pdf"
directory, file_name = "/home/boyun/PycharmProjects/EfficientNet-PyTorch/","efficientnet_b1.pdf"
# Remove extension from file name. dot.render() adds it.
file_name = file_name.replace("." + "pdf", "")
dot.render(file_name, directory=directory, cleanup=True)
print(model)
print("-------------------------------------------")
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader, epoch)
if (args.save_model):
torch.save(model.state_dict(), "mnist_cnn.pt")
writer.close()
if __name__ == '__main__':
main()
不同的版本,当时在一个一个试,仅供参考
#-*-coding:utf-8-*-
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms, models
from efficientnet_pytorch import EfficientNet
from efficientnet_pytorch import utils
from MyDataset import MyDataset
from torchsummary import summary
from torchstat import stat
from tensorboardX import SummaryWriter
writer = SummaryWriter('log')
from torchviz import make_dot, make_dot_from_trace
import hiddenlayer as hl
from hiddenlayer import transforms as ht
import os
import torch.onnx
import tensorwatch as tw
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
#for batch_idx, (data, target) in enumerate(train_loader):
for batch_idx, data_ynh in enumerate(train_loader):
# 获取图片和标签
data, target = data_ynh
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
output1 = torch.nn.functional.log_softmax(output, dim=1)
loss = F.nll_loss(output1, target)
#loss = F.l1_loss(output, target)
loss.backward()
optimizer.step()
#new ynh
#每10个batch画个点用于loss曲线
if batch_idx % 10 == 0:
niter = epoch * len(train_loader) + batch_idx
writer.add_scalar('Train/Loss', loss.data, niter)
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader, epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
#for data, target in test_loader:
for data_ynh in test_loader:
# 获取图片和标签
data, target = data_ynh
data, target = data.to(device), target.to(device)
output = model(data)
output1 = torch.nn.functional.log_softmax(output, dim=1)
test_loss += F.nll_loss(output1, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
# new ynh
writer.add_scalar('Test/Accu', test_loss, epoch)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=10, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# -------------------------------------------- step 1/5 : 加载数据 -------------------------------------------
train_txt_path = './Data/train.txt'
valid_txt_path = './Data/valid.txt'
# 数据预处理设置
#normMean = [0.4948052, 0.48568845, 0.44682974]
#normStd = [0.24580306, 0.24236229, 0.2603115]
normMean = [104, 117, 123]
normStd = [1, 1, 1]
normTransform = transforms.Normalize(normMean, normStd)
trainTransform = transforms.Compose([
transforms.Resize(224),
#transforms.RandomCrop(224, padding=4),
transforms.ToTensor(),
#normTransform
])
validTransform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
#normTransform
])
# 构建MyDataset实例 img_path是一种可在txt图片路径前面加入的一种机制
train_data = MyDataset(img_path = '', txt_path=train_txt_path, transform=trainTransform)
valid_data = MyDataset(img_path = '', txt_path=valid_txt_path, transform=validTransform)
# 构建DataLoder
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=16, shuffle=True, num_workers=2)
valid_loader = torch.utils.data.DataLoader(dataset=valid_data, batch_size=16, num_workers=2)
#blocks_args, global_params = utils.get_model_params('efficientnet-b0', override_params=None)
#model = EfficientNet(blocks_args, global_params)
model = EfficientNet.from_pretrained('efficientnet-b0').to(device)#.cuda()
#dummy_input = torch.rand(1, 3, 224, 224).requires_grad_(True)
#writer.add_graph(model, (dummy_input,))
# no cuda()
#vis_graph = make_dot(model(dummy_input), params=dict(model.named_parameters()))
#vis_graph = make_dot(model(dummy_input), params=dict(list(model.named_parameters()) + [('x', dummy_input)]))
#vis_graph.view()
#no cuda()
#input = torch.zeros([1, 3, 224, 224])
#hl_graph = hl.build_graph(model, input)
#hl_graph.theme = hl.graph.THEMES["blue"].copy()
#hl_graph.save(os.path.join("/home/boyun/PycharmProjects/EfficientNet-1852", "pytorch_resnet_bloks.pdf"))
#netron这个工具来可视化(读取ONNX文件)
#https://discuss.pytorch.org/t/onnx-export-failed-couldnt-export-operator-aten-adaptive-avg-pool1d/30204
#https://ptorch.com/news/95.html
#model.train(False)
#dummy_input = torch.randn(10, 3, 224, 224, device='cuda')
#torch_out = torch.onnx._export(model, dummy_input, "./efficientnet-b0.onnx", export_params=True, verbose=True)
#no .cuda()
#tw_graph = tw.draw_model(model, [1, 3, 224, 224])
#print(model)
#model.to(device)
#summary(model, (3, 224, 224))
#model.cpu()
#stat(model, (3, 224, 224))
print("-------------------------------------------")
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, valid_loader, epoch)
if (args.save_model):
torch.save(model.state_dict(), "mnist_cnn.pt")
writer.close()
if __name__ == '__main__':
main()
或者:
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms, models
from efficientnet_pytorch import EfficientNet
from efficientnet_pytorch import utils
from torchsummary import summary
from torchstat import stat
from tensorboardX import SummaryWriter
writer = SummaryWriter('log')
import torch.onnx
import tensorwatch as tw
from torchviz import make_dot, make_dot_from_trace
import hiddenlayer as hl
from hiddenlayer import transforms as ht
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
output1 = torch.nn.functional.log_softmax(output, dim=1)
loss = F.nll_loss(output1, target)
#loss = F.l1_loss(output, target)
loss.backward()
optimizer.step()
#new ynh
#每10个batch画个点用于loss曲线
if batch_idx % 10 == 0:
niter = epoch * len(train_loader) + batch_idx
writer.add_scalar('Train/Loss', loss.data, niter)
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader, epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
output1 = torch.nn.functional.log_softmax(output, dim=1)
test_loss += F.nll_loss(output1, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
# new ynh
writer.add_scalar('Test/Accu', test_loss, epoch)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=10, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='./mnist', train=True,download=True,
transform=transforms.Compose([
transforms.Resize((224), interpolation=2),
transforms.Grayscale(3),
transforms.ToTensor(),
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='./mnist', train=False, transform=transforms.Compose([
transforms.Resize((224), interpolation=2),
transforms.Grayscale(3),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
blocks_args, global_params = utils.get_model_params('efficientnet-b0', override_params=None)
#model = EfficientNet.from_pretrained('efficientnet-b0').to(device)#.cuda()
model = EfficientNet(blocks_args, global_params)#.to(device) # .cuda()
#dummy_input = torch.rand(1, 3, 224, 224)
#writer.add_graph(model, (dummy_input,))
#dummy_input = torch.randn(10, 3, 224, 224, device='cuda')
#model = model.cuda()
model1 = models.alexnet(pretrained=True)#.cuda()
#torch.onnx.export(model1, dummy_input, "efficientnet.onnx", verbose=True)
#print(model)
#x = x.view(x.size(0), 256 * 6 * 6)
#x = x.view(x.size(0), -1) 这句话的出现就是为了将前面多维度的tensor展平成一维
#x = x.view(x.size(0), -1)简化x = x.view(batchsize, -1)
#AdaptiveAvgPool2d - [-1, 256, 6, 6]
#Dropout - [-1, 9216]
tw_graph = tw.draw_model(model1, [1, 3, 224, 224])
tw_graph.save("/home/boyun/PycharmProjects/EfficientNet-py1.0.1/pytorch_resnet_bloks.pdf")
input = torch.zeros([1, 3, 224, 224])
hl_graph = hl.build_graph(model1, input)
hl_graph.theme = hl.graph.THEMES["blue"].copy()
hl_graph.save("/home/boyun/PycharmProjects/EfficientNet-py1.0.1/pytorch_resnet_bloks_1.pdf")
#stat(model, (3, 224, 224))
model.to(device)
#summary(model, (3, 224, 224))
print("-------------------------------------------")
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader, epoch)
if (args.save_model):
torch.save(model.state_dict(), "mnist_cnn.pt")
writer.close()
if __name__ == '__main__':
main()