绝缘子红外图像检测项目(TF2)

目录

1. 项目背景

2. 图像数据集介绍

labelimg的安装流程:

1. 打开Anaconda Prompt(Anaconda3)

2. 创建一个新环境来安装labelimg

3. 激活新创建的环境labelimg

4.输入

5.输入labelimg 即可运行

 3. 模型介绍

 4. 模型性能测试


1. 项目背景

       瓷绝缘子在长期机电负荷与恶劣气候条件影响下,易发生劣化并出现零值现象,导致绝缘子串的有效爬电距离缩短,在过电压下易发生闪络击穿,严重威胁输配电线路的安全运行。红外热像法因其非接触式、安全高效的优点,成为现有技术中相对可行的零值绝缘子带电检测方法。

绝缘子红外图像检测项目(TF2)_第1张图片

2. 图像数据集介绍

          收集到440幅绝缘子红外测温图像,并利用labelimg对其中的绝缘子进行标注。

绝缘子VOC标签的格式如下:


	
	1.jpg
	1.jpg
	
		roboflow.ai
	
	
		416
		416
		3
	
	0
	
		insulator
		Unspecified
		0
		0
		0
		
			231
			405
			1
			212
		
	
	
		insulator
		Unspecified
		0
		0
		0
		
			193
			254
			262
			367
		
	

labelimg的安装流程:

1. 打开Anaconda Prompt(Anaconda3)

2. 创建一个新环境来安装labelimg

conda create -n labelimg python=3.7

3. 激活新创建的环境labelimg

conda activate labelimg

4.输入

conda activate labelimg

5.输入labelimg 即可运行

绝缘子红外图像检测项目(TF2)_第2张图片

 3. 模型介绍

绝缘子红外图像检测项目(TF2)_第3张图片

    模型训练过程中采用余弦退火衰减算法、并采用adam优化完成对模型权值参数的更新,其中训练集:测试集=9:1,冻结原始预训练YOLOv5模型前234层,迭代训练800个epoch,batchsize1=8,再解冻迭代训练200个epoch,batchsize2=4,3060ti显卡。

主干特征提取网络:

from functools import wraps

import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.initializers import RandomNormal
from tensorflow.keras.layers import (Add, BatchNormalization, Concatenate,
                                     Conv2D, Layer, MaxPooling2D,
                                     ZeroPadding2D)
from tensorflow.keras.regularizers import l2
from utils.utils import compose


class SiLU(Layer):
    def __init__(self, **kwargs):
        super(SiLU, self).__init__(**kwargs)
        self.supports_masking = True

    def call(self, inputs):
        return inputs * K.sigmoid(inputs)

    def get_config(self):
        config = super(SiLU, self).get_config()
        return config

    def compute_output_shape(self, input_shape):
        return input_shape

class Focus(Layer):
    def __init__(self):
        super(Focus, self).__init__()

    def compute_output_shape(self, input_shape):
        return (input_shape[0], input_shape[1] // 2 if input_shape[1] != None else input_shape[1], input_shape[2] // 2 if input_shape[2] != None else input_shape[2], input_shape[3] * 4)

    def call(self, x):
        return tf.concat(
            [x[...,  ::2,  ::2, :],
             x[..., 1::2,  ::2, :],
             x[...,  ::2, 1::2, :],
             x[..., 1::2, 1::2, :]],
             axis=-1
        )

@wraps(Conv2D)
def DarknetConv2D(*args, **kwargs):
    darknet_conv_kwargs = {'kernel_initializer' : RandomNormal(stddev=0.02), 'kernel_regularizer' : l2(kwargs.get('weight_decay', 5e-4))}
    darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides')==(2, 2) else 'same'   
    try:
        del kwargs['weight_decay']
    except:
        pass
    darknet_conv_kwargs.update(kwargs)
    return Conv2D(*args, **darknet_conv_kwargs)

#---------------------------------------------------#
#   卷积块 -> 卷积 + 标准化 + 激活函数
#   DarknetConv2D + BatchNormalization + SiLU
#---------------------------------------------------#
def DarknetConv2D_BN_SiLU(*args, **kwargs):
    no_bias_kwargs = {'use_bias': False}
    no_bias_kwargs.update(kwargs)
    if "name" in kwargs.keys():
        no_bias_kwargs['name'] = kwargs['name'] + '.conv'
    return compose(
        DarknetConv2D(*args, **no_bias_kwargs),
        BatchNormalization(momentum = 0.97, epsilon = 0.001, name = kwargs['name'] + '.bn'),
        SiLU())

def Bottleneck(x, out_channels, shortcut=True, weight_decay=5e-4, name = ""):
    y = compose(
            DarknetConv2D_BN_SiLU(out_channels, (1, 1), weight_decay=weight_decay, name = name + '.cv1'),
            DarknetConv2D_BN_SiLU(out_channels, (3, 3), weight_decay=weight_decay, name = name + '.cv2'))(x)
    if shortcut:
        y = Add()([x, y])
    return y

def C3(x, num_filters, num_blocks, shortcut=True, expansion=0.5, weight_decay=5e-4, name=""):
    hidden_channels = int(num_filters * expansion)

    x_1 = DarknetConv2D_BN_SiLU(hidden_channels, (1, 1), weight_decay=weight_decay, name = name + '.cv1')(x)

    x_2 = DarknetConv2D_BN_SiLU(hidden_channels, (1, 1), weight_decay=weight_decay, name = name + '.cv2')(x)
    for i in range(num_blocks):
        x_1 = Bottleneck(x_1, hidden_channels, shortcut=shortcut, weight_decay=weight_decay, name = name + '.m.' + str(i))
    #----------------------------------------------------------------#
    route = Concatenate()([x_1, x_2])
    return DarknetConv2D_BN_SiLU(num_filters, (1, 1), weight_decay=weight_decay, name = name + '.cv3')(route)

def SPPBottleneck(x, out_channels, weight_decay=5e-4, name = ""):

    x = DarknetConv2D_BN_SiLU(out_channels // 2, (1, 1), weight_decay=weight_decay, name = name + '.cv1')(x)
    maxpool1 = MaxPooling2D(pool_size=(5, 5), strides=(1, 1), padding='same')(x)
    maxpool2 = MaxPooling2D(pool_size=(9, 9), strides=(1, 1), padding='same')(x)
    maxpool3 = MaxPooling2D(pool_size=(13, 13), strides=(1, 1), padding='same')(x)
    x = Concatenate()([x, maxpool1, maxpool2, maxpool3])
    x = DarknetConv2D_BN_SiLU(out_channels, (1, 1), weight_decay=weight_decay, name = name + '.cv2')(x)
    return x
    
def resblock_body(x, num_filters, num_blocks, expansion=0.5, shortcut=True, last=False, weight_decay=5e-4, name = ""):


    # 320, 320, 64 => 160, 160, 128
    x = ZeroPadding2D(((1, 0),(1, 0)))(x)
    x = DarknetConv2D_BN_SiLU(num_filters, (3, 3), strides = (2, 2), weight_decay=weight_decay, name = name + '.0')(x)
    if last:
        x = SPPBottleneck(x, num_filters, weight_decay=weight_decay, name = name + '.1')
    return C3(x, num_filters, num_blocks, shortcut=shortcut, expansion=expansion, weight_decay=weight_decay, name = name + '.1' if not last else name + '.2')

def darknet_body(x, base_channels, base_depth, weight_decay=5e-4):
    # 640, 640, 3 => 320, 320, 12
    x = Focus()(x)
    # 320, 320, 12 => 320, 320, 64
    x = DarknetConv2D_BN_SiLU(base_channels, (3, 3), weight_decay=weight_decay, name = 'backbone.stem.conv')(x)
    # 320, 320, 64 => 160, 160, 128
    x = resblock_body(x, base_channels * 2, base_depth, weight_decay=weight_decay, name = 'backbone.dark2')
    # 160, 160, 128 => 80, 80, 256
    x = resblock_body(x, base_channels * 4, base_depth * 3, weight_decay=weight_decay, name = 'backbone.dark3')
    feat1 = x
    # 80, 80, 256 => 40, 40, 512
    x = resblock_body(x, base_channels * 8, base_depth * 3, weight_decay=weight_decay, name = 'backbone.dark4')
    feat2 = x
    # 40, 40, 512 => 20, 20, 1024
    x = resblock_body(x, base_channels * 16, base_depth, shortcut=False, last=True, weight_decay=weight_decay, name = 'backbone.dark5')
    feat3 = x
    return feat1,feat2,feat3

yolov5模型:

from tensorflow.keras.layers import (Concatenate, Input, Lambda, UpSampling2D,
                                     ZeroPadding2D)
from tensorflow.keras.models import Model

from nets.CSPdarknet import (C3, DarknetConv2D, DarknetConv2D_BN_SiLU,
                             darknet_body)
from nets.yolo_training import yolo_loss


#---------------------------------------------------#

def yolo_body(input_shape, anchors_mask, num_classes, phi, weight_decay=5e-4):
    depth_dict          = {'s' : 0.33, 'm' : 0.67, 'l' : 1.00, 'x' : 1.33,}
    width_dict          = {'s' : 0.50, 'm' : 0.75, 'l' : 1.00, 'x' : 1.25,}
    dep_mul, wid_mul    = depth_dict[phi], width_dict[phi]

    base_channels       = int(wid_mul * 64)  # 64
    base_depth          = max(round(dep_mul * 3), 1)  # 3

    inputs      = Input(input_shape)
  
    feat1, feat2, feat3 = darknet_body(inputs, base_channels, base_depth, weight_decay)

    P5          = DarknetConv2D_BN_SiLU(int(base_channels * 8), (1, 1), weight_decay=weight_decay, name = 'conv_for_feat3')(feat3)  
    P5_upsample = UpSampling2D()(P5) 
    P5_upsample = Concatenate(axis = -1)([P5_upsample, feat2])
    P5_upsample = C3(P5_upsample, int(base_channels * 8), base_depth, shortcut = False, weight_decay=weight_decay, name = 'conv3_for_upsample1')

    P4          = DarknetConv2D_BN_SiLU(int(base_channels * 4), (1, 1), weight_decay=weight_decay, name = 'conv_for_feat2')(P5_upsample)
    P4_upsample = UpSampling2D()(P4)
    P4_upsample = Concatenate(axis = -1)([P4_upsample, feat1])
    P3_out      = C3(P4_upsample, int(base_channels * 4), base_depth, shortcut = False, weight_decay=weight_decay, name = 'conv3_for_upsample2')

    P3_downsample   = ZeroPadding2D(((1, 0),(1, 0)))(P3_out)
    P3_downsample   = DarknetConv2D_BN_SiLU(int(base_channels * 4), (3, 3), strides = (2, 2), weight_decay=weight_decay, name = 'down_sample1')(P3_downsample)
    P3_downsample   = Concatenate(axis = -1)([P3_downsample, P4])
    P4_out          = C3(P3_downsample, int(base_channels * 8), base_depth, shortcut = False, weight_decay=weight_decay, name = 'conv3_for_downsample1') 

    P4_downsample   = ZeroPadding2D(((1, 0),(1, 0)))(P4_out)
    P4_downsample   = DarknetConv2D_BN_SiLU(int(base_channels * 8), (3, 3), strides = (2, 2), weight_decay=weight_decay, name = 'down_sample2')(P4_downsample)
    P4_downsample   = Concatenate(axis = -1)([P4_downsample, P5])
    P5_out          = C3(P4_downsample, int(base_channels * 16), base_depth, shortcut = False, weight_decay=weight_decay, name = 'conv3_for_downsample2')

    out2 = DarknetConv2D(len(anchors_mask[2]) * (5 + num_classes), (1, 1), strides = (1, 1), weight_decay=weight_decay, name = 'yolo_head_P3')(P3_out)
    out1 = DarknetConv2D(len(anchors_mask[1]) * (5 + num_classes), (1, 1), strides = (1, 1), weight_decay=weight_decay, name = 'yolo_head_P4')(P4_out)
    out0 = DarknetConv2D(len(anchors_mask[0]) * (5 + num_classes), (1, 1), strides = (1, 1), weight_decay=weight_decay, name = 'yolo_head_P5')(P5_out)
    return Model(inputs, [out0, out1, out2])

def get_train_model(model_body, input_shape, num_classes, anchors, anchors_mask, label_smoothing):
    y_true = [Input(shape = (input_shape[0] // {0:32, 1:16, 2:8}[l], input_shape[1] // {0:32, 1:16, 2:8}[l], \
                                len(anchors_mask[l]), num_classes + 5)) for l in range(len(anchors_mask))]
    model_loss  = Lambda(
        yolo_loss, 
        output_shape    = (1, ), 
        name            = 'yolo_loss', 
        arguments       = {
            'input_shape'       : input_shape, 
            'anchors'           : anchors, 
            'anchors_mask'      : anchors_mask, 
            'num_classes'       : num_classes, 
            'label_smoothing'   : label_smoothing, 
            'balance'           : [0.4, 1.0, 4],
            'box_ratio'         : 0.05,
            'obj_ratio'         : 1 * (input_shape[0] * input_shape[1]) / (640 ** 2), 
            'cls_ratio'         : 0.5 * (num_classes / 80)
        }
    )([*model_body.output, *y_true])
    model       = Model([model_body.input, *y_true], model_loss)
    return model

 4. 模型性能测试

模型测试的mAP值:

绝缘子红外图像检测项目(TF2)_第4张图片

获取mAP的程序:

import os
import xml.etree.ElementTree as ET

import tensorflow as tf
from PIL import Image
from tqdm import tqdm

from utils.utils import get_classes
from utils.utils_map import get_coco_map, get_map
from yolo import YOLO

gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)
    
if __name__ == "__main__":

  
    classes_path    = 'data/defeat_name.txt'
 
    MINOVERLAP      = 0.5

    VOCdevkit_path  = 'VOCdevkit'

    image_ids = open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Main/test.txt")).read().strip().split()

    if not os.path.exists(map_out_path):
        os.makedirs(map_out_path)
    if not os.path.exists(os.path.join(map_out_path, 'ground-truth')):
        os.makedirs(os.path.join(map_out_path, 'ground-truth'))
    if not os.path.exists(os.path.join(map_out_path, 'detection-results')):
        os.makedirs(os.path.join(map_out_path, 'detection-results'))
    if not os.path.exists(os.path.join(map_out_path, 'images-optional')):
        os.makedirs(os.path.join(map_out_path, 'images-optional'))

    class_names, _ = get_classes(classes_path)

    if map_mode == 0 :
        print("Load model.")
        yolo = YOLO(confidence = 0.001, nms_iou = 0.5)
        print("Load model done.")

        print("Get predict result.")
        for image_id in tqdm(image_ids):
            image_path  = os.path.join(VOCdevkit_path, "VOC2007/JPEGImages/"+image_id+".jpg")
            image       = Image.open(image_path)
            if map_vis:
                image.save(os.path.join(map_out_path, "images-optional/" + image_id + ".jpg"))
            yolo.get_map_txt(image_id, image, class_names, map_out_path)
        print("Get predict result done.")
        

    

实例预测:

绝缘子红外图像检测项目(TF2)_第5张图片

你可能感兴趣的:(python,深度学习,开发语言)