数据仓库的模型设计流程

数仓模型设计的整体流程涉及需求调研、模型设计、开发测试、模型上线四个主要环节,且规范设计了每个阶段的输出与输入文档。

数据仓库的模型设计流程_第1张图片

 

  1. 需求调研:收集和理解业务方需求,就特定需求的口径达成统一,在对需求中涉及到的业务系统或系统模块所承担的功能进行梳理后进行表字段级分析,并对数据进行验证,确保现有数据能够支持业务需求
  2. 模型设计:根据需求和业务调研结果对模型进行初步归类,选择合适的主题域进行模型存放;确定主题后进入数据模型的设计阶段,逻辑模型设计过程要考虑总线结构构建、模型规范定义等关键问题;物理模型设计以逻辑模型为基础,兼顾存储性能等因素对逻辑模型做的物理化的过程,是逻辑模型的最终物理实现.物理模型在一般情况下与逻辑模型保持一致,模型设计完成后需要进入评审与 Mapping 设计。
  3. 模型开发:就是对模型计算脚本的代码实现过程,其中包含了数据映射、脚本实现、测试验证等开发过程。单元测试完成后需要通知业务方一起对模型数据进行业务验证,对验证问题做收集,返回验证模型设计的合理性。
  4. 模型上线:完成验证后的模型就可以在线上生产环境进行部署。上线后需要为模型配置监控,及时掌握为业务提供数据服务的状况。我们还将模型的实体和属性说明文档发布给仓库数据的使用者,使模型得到更好地应用。

你可能感兴趣的:(数据仓库,数仓模型设计,设计流程,需求调研)