yolo fastest V2数据集训练模型步骤

1,收集数据集,train,val文件夹
2,labelimg标注数据集,yolo数据格式
3,运行train和val内jpg2listtxt.bat生成各自的list.txt
4,修改category.names,每个类一行
5,生成anchors锚点数据
python genanchors.py --traintxt train/list.txt
6,修改training.data内anchors和classes的类目数量
7,训练数据集
python train.py --data ./training.data
8,效果评估(pth文件名称为训练后生成的文件名称)
python evaluation.py --data training.data --weights weights/coco.pth
9,测试效果
python test.py --data training.data --weights weights/coco.pth --img train/xxx.jpg
10,转换成onnx模型
python pytorch2onnx.py --data training.data --weights weights/xxx.pth --output onnx/hand.onnx
11,安装onnxsim库,对onnx模型裁剪优化
python -m onnxsim onnx/hand.onnx onnx/hand-opt.onnx

jpg2listtxt.bat内容

dir /b/s/p/w *.jpg > list.txt
pause

其他文件请查找github上yolofastestv2

你可能感兴趣的:(yolo,深度学习,python,目标检测)