- 【基于PyTorch】多项式贝叶斯分类器实现中文文本情感分类任务
鱼弦
机器学习设计类系统pytorch分类人工智能
多项式贝叶斯分类器实现中文文本情感分类任务介绍多项式朴素贝叶斯(MultinomialNaiveBayes,MultinomialNB)是一种常用于文本分类的算法,特别适用于多类别文本分类。其在处理离散数据(如文本数据中的词频)时表现优异,可以用于情感分析、垃圾邮件检测等任务。应用使用场景情感分析:识别用户评论的情感,例如正面评论和负面评论。垃圾邮件检测:鉴别电子邮件是否为垃圾邮件。新闻分类:将新
- FastDVDnet:基于深度学习的视频去噪框架
陆可鹃Joey
FastDVDnet:基于深度学习的视频去噪框架项目地址:https://gitcode.com/gh_mirrors/fa/fastdvdnet项目介绍FastDVDnet是一个高效、开源的深度学习模型,专注于视频去噪。该项目由MatteoTassano开发并维护,旨在提供一种快速且有效的解决方案,以消除视频中的噪声,同时保持图像细节和自然纹理。它利用了时间域的连续性和深层神经网络的力量,确保在
- 手撕multi-head self attention 代码
心若成风、
自然语言处理语言模型transformer
在深度学习和自然语言处理领域,多头自注意力(Multi-HeadSelf-Attention)机制是Transformer模型中的核心组件之一。它允许模型在处理序列数据时,能够同时关注序列中的不同位置,从而捕获到丰富的上下文信息。下面,我们将详细解析多头自注意力机制的实现代码。一、概述多头自注意力机制的核心思想是将输入序列进行多次线性变换,然后分别计算自注意力得分,最后将所有头的输出进行拼接,并通
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- MATLAB算法实战应用案例精讲-【深度学习】归一化
林聪木
matlab算法深度学习
目录为什么要做特征归一化/标准化?常用featurescaling方法计算方式上对比分析featurescaling需要还是不需要什么时候需要featurescaling?什么时候不需要FeatureScaling?归一化基础知识点1.什么是归一化2.为什么要归一化3.为什么归一化能提高求解最优解的速度4.归一化有哪些类型5.不同归一化的使用条件6.归一化和标准化的联系与区别层归一化综述提出背景概
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 从零开始大模型开发与微调:PyTorch 2.0深度学习环境搭建
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch2.0深度学习环境搭建作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,大模型开发与微调成为了当前研究的热点。大模型能够学习到丰富的知识,并在各个下游任务上取得优异的性能。然而,大模型开发与微调需要强大的计算资源和专业的知识背景,这对于许多初学者和研究
- 仅仅使用pytorch来手撕transformer架构(3):编码器模块和编码器类的实现和向前传播
KangkangLoveNLP
手撕系列#transformerpytorchtransformer人工智能深度学习架构机器学习python
仅仅使用pytorch来手撕transformer架构(2):编码器模块和编码器类的实现和向前传播往期文章:仅仅使用pytorch来手撕transformer架构(1):位置编码的类的实现和向前传播最适合小白入门的Transformer介绍仅仅使用pytorch来手撕transformer架构(2):多头注意力MultiHeadAttention类的实现和向前传播#Transformer编码器模块
- AI大模型学习路线及相关资源推荐
python游乐园
学习资源学习PythonAIAI编程人工智能
哈喽,大家好!本文为大家带来AI大模型学习路线及相关资源推荐,这对于学习掌握AI大模型很有帮助呦,希望大家多多点赞收藏~感谢~~1AI大模型的基础信息1.1什么是AI大模型AI大模型,即人工智能大型模型,是一种基于深度学习技术,具有海量参数、强大算力支持、能够处理和生成复杂数据的人工智能模型。1.2AI大模型的主要特点规模庞大:AI大模型通常包含海量的参数。例如,谷歌的BERT模型在最初发布时就有
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- 【深度学习与大模型基础】第3章-张量
lynn-66
深度学习与大模型基础深度学习人工智能
大家好!今天我们来聊聊张量(Tensor)。别被这个词吓到,其实它没那么复杂。什么是张量?简单来说,张量就是一个多维数组。你可以把它看作是一个装数据的容器,数据的维度可以是一维、二维,甚至更高。标量(0维张量):就是一个单独的数字,比如3。向量(1维张量):一串数字,比如[1,2,3]。矩阵(2维张量):一个表格,比如[[1,2],[3,4]]。更高维张量:比如[[[1,2],[3,4]],[[5
- pytorch训练权重转化为tensorflow模型的教训
小枫小疯
深度学习部署模型转移pytorchtensorflow人工智能
模型构建时候有时候在工程量比较大的时候,不可避免使用迭代算法,迭代算法本身会让错误的追踪更加困难,因此掌握基本的框架之间的差异非常重要。以下均是在模型转换过程中出现的错误。shuffleoperation(shuffle操作)这个操作原本是用来将各个通道之间的信息进行打乱后,此时面临重要的问题就是,如果将通道打乱,在pytorch里面与tensorflow中间,两种通道排序是不一样的,是采用不同的
- OpenCV 深度学习模块 cv2.dnn 与其他深度学习框架的优缺点对比及适用场景
白.夜
深度学习opencv
OpenCV提供了一个深度学习模块cv2.dnn,让开发者能够在计算机视觉项目中轻松加载和推理深度学习模型。相比于TensorFlow、PyTorch等其他深度学习框架,cv2.dnn有其独特的优点与缺点,适用于不同的应用场景。在这篇文章中,我们将详细分析cv2.dnn的优缺点,并讨论它的适用场景。一、cv2.dnn的优点1.简单易用cv2.dnn提供了一个相对简单且易于使用的接口,适合已经在使用
- 深度学习中的 blob 格式:与普通 image 的区别及转换原因
白.夜
深度学习人工智能
在深度学习模型推理过程中,我们经常会用到cv2.dnn.blobFromImage函数将普通图像转换为blob格式。那么,blob格式到底是什么?它和普通image有什么区别?为什么在模型推理中需要这种转换?本文将用通俗的语言为你解答这些问题。1.什么是blob格式?blob是OpenCV中用于深度学习模型输入的一种特殊数据格式,全称为BinaryLargeObject。它本质上是一个多维数组(通
- 小狐狸AI数字人源码独立SAAS部署全开源+搭建环境教程
kaui52066
kaui52066精品源码人工智能uni-app前端小程序php小狐狸AI数字人数字人源码
一.系统介绍小狐狸AI数字人分身系统源码独立部署支持PC端、小程序端、H5端,一键克隆真人形象+声音核心功能亮点:1:1真人级克隆技术声音克隆:上传3分钟音频,AI深度学习声纹特征,复刻语气、情感、方言形象克隆:通过照片/视频建模,生成动态3D数字人,表情自然,动作流畅智能口型同步引擎AI算法精准匹配唇形与语音,实现口型同步0门槛SAAS化操作无需专业设备,网页端一键生成数字人视频海量模板库:电商
- 【PyTorch】PyTorch 中改变张量形状的几种方法
shengchao0920
pytorch人工智能python
PyTorch中改变张量形状的几种方法在深度学习领域,PyTorch是一个广泛使用的框架,它提供了丰富的API来处理张量(tensor)。在模型开发过程中,我们经常需要改变张量的形状以满足特定的需求。本文将介绍在PyTorch中改变张量形状的几种方法,并给出推荐的使用场景。比如:我们想合并一个张量的最后两个维度。一、方法1.使用reshape方法reshape方法可以改变张量的形状而不改变其数据。
- PyTorch 中的维度操作详解
萝卜小白
pytorch人工智能python
在PyTorch中,维度(dimension)是描述张量形状的一种方式。维度操作是PyTorch中非常重要的功能,常用于调整张量的形状以适配各种计算需求。以下是常见的维度操作及其示例。1.维度的概念回顾一个二维张量(矩阵)的形状是(行数,列数)。一个三维张量的形状是(深度,行数,列数)。维度的索引从0开始,最外层是axis=0,向内依次递增。2.维度的操作(1)求和(Sum)sum(dim)的作用
- torch.logical_and()方法
CodeWang_NC
pytorch深度学习python
torch.logical_and()计算给定输入张量的元素逻辑AND。零被视为False,非零被视为True官方文档说明:https://pytorch.org/docs/stable/generated/torch.logical_and.html#torch.logical_andtorch.logical_and(input,other,*,out=None)→返回张量input(张量)–
- [Pytorch] Error:module ‘torch‘ has no attribute ‘logical_and‘
江南蜡笔小新
杂记pytorch深度学习神经网络
最近学习的模型用到了这个逻辑与的操作,Pytorch1.3.x报错。查阅官方文档,只有logical_not和logical_xor的实现。但在1.9的文档中有logical_and遂查阅相关更新,得知logical_and在1.5之后的新功能,pytorch更新到>=1.5即可解决问题。1.3.1搜索结果1.5.1搜索结果
- Orin NX 安装Jetpack 6.2 及部署pytorch tips
MYVision_ MY视界
Pythonpytorch人工智能python
刷机tips:刷完系统之后,如果需要安装其它软件,这个时候不需要跳线,然后输入真实的IP,确保你的x86ubuntu能ping通OrinNX.其它安装环境时遇到的问题如下:1.GPUenable=False-installtorch-2.3.0-cp310-cp310-linux_aarch64.whl2.ImportError:/home/platform/miniconda3/envs/cel
- 一文讲清楚CUDA与PyTorch、GPU之间的关系
平凡而伟大.
编程语言人工智能架构设计pytorch人工智能python
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一个并行计算平台和编程模型。它允许软件开发人员和研究人员利用NVIDIA的GPU(图形处理单元)进行高性能计算。CUDA提供了一系列API和工具,使得开发者能够编写和优化在GPU上运行的计算密集型任务。CUDA与PyTorch、GPU之间的关系可以这样理解:1.CUDA与GPU:GPU:是一种专门用于
- OpenAI 团队组织架构和研发技术栈
AI天才研究院
ChatGPT人工智能
OpenAI是一家致力于推动人工智能技术发展的公司,成立于2015年。其目标是确保人工智能技术造福全人类。为了实现这一目标,OpenAI采用了多种先进的技术和组织架构来推动其研发工作。目录OpenAI组织架构和研发技术栈概述1OpenAI团队的世界顶尖科学家IlyaSutskever:Ilya是OpenAI的联合创始人之一,也是深度学习领域的先驱。他在神经网络和深度学习方面的研究具有重要影响,曾与
- 深度学习-服务器训练SparseDrive过程记录
weixin_40826634
深度学习服务器人工智能
1、cuda安装1.1卸载安装失败的cuda参考:https://blog.csdn.net/weixin_40826634/article/details/127493809注意:因为/usr/local/cuda-xx.x/bin/下没有卸载脚本,很可能是apt安装的,所以通过执行下面的命令删除:apt-get--purgeremove"cuda*"apt-getautoremove然后执行f
- 【Transformer-Hugging Face手册 07/10】 微调预训练模型
无水先生
人工智能高级阶段人工智能综合transformer深度学习人工智能
微调预训练模型-目录一、说明二、在本机PyTorch中微调预训练模型。2.1加载数据2.2训练2.2.1使用PyTorchTrainer进行训练2.3训练超参数2.4评价2.5训练类三、使用Keras训练TensorFlow模型3.1为Keras加载数据3.2将数据加载为tf.data.Dataset3.3数据加载器3.4优化器和学习率调度器3.5训练循环3.6评价四、结论一、说明 使用预训练模
- 模型量化 (Model Quantization) 算法 (Model Quantization Algorithms)
(initial)
大模型科普算法人工智能量化
1模型量化的必要性:降低模型大小、加速推理、减少资源消耗随着深度学习模型的日益复杂和庞大,其在资源受限的设备(如移动端、嵌入式设备)上的部署面临着巨大的挑战。即使在服务器端,部署大型模型也会带来高昂的计算成本和能源消耗。模型量化(ModelQuantization)作为一种关键的模型压缩和加速技术应运而生。其核心思想是将模型中的浮点数(通常是FP32或FP16)表示的权重和激活值转换为低精度整数(
- 《探秘人工智能与鸿蒙系统集成开发的硬件基石》
程序猿阿伟
人工智能harmonyos华为
在科技飞速发展的当下,人工智能与鸿蒙系统的集成开发开辟了创新的前沿领域。这一融合不仅代表着技术的演进,更预示着智能设备生态的全新变革。而在这场技术盛宴的背后,坚实的硬件配置是确保开发顺利进行的关键,它就像一座大厦的基石,决定了上层建筑的高度和稳定性。处理器:运算核心的澎湃动力处理器作为硬件系统的核心,在人工智能与鸿蒙系统集成开发中扮演着至关重要的角色。对于模型训练任务,尤其是深度学习模型,其复杂的
- Development Problems Based On PyTorch
woxiwangxuehaocpp
pytorch深度学习人工智能
问题解决RuntimeError:unabletowritetofile:Nospaceleftondevice(28)问题描述:Traceback(mostrecentcalllast):File"/opt/conda/lib/python3.10/multiprocessing/queues.py",line244,in_feedobj=_ForkingPickler.dumps(obj)Fi
- Pycharm中import torch报错解决方案(Python+Pycharm+Pytorch cpu版)
波波仔86
人工智能pythonpycharmpytorchimport解释器配置
pycharm环境搭建完毕后,编写一个py文件demo,importtorch报错,提示没有。设置python解释器:选择conda环境,使用现有环境,conda执行文件找到Anaconda安装路径下Scripts文件夹内的conda.exe,最后选择含有torch软件包的虚拟环境,题主创建名为pytorch。创建完解释器后,下方会显示出该解释器/虚拟环境下的所有软件包,看到有pytorch包即选
- 【python error】cannot import name ‘TorchDispatchMode‘ from ‘torch.utils._python_dispatch‘
Eternal-Student
JetsonOrinNXPythonpython开发语言
报错:cannotimportname‘TorchDispatchMode’from‘torch.utils._python_dispatch’(/home/nvidia/.conda/envs/pytorch/lib/python3.8/site-packages/torch/utils/_python_dispatch.py)File“/media/nvidia/Ubuntu/xxxxx/ev
- 嵌入式AI必备技能2-模型的压缩与加速
奥德彪123
嵌入式AI人工智能嵌入式
嵌入式AI必备技能2-模型的压缩与加速引言随着嵌入式AI设备的广泛应用,模型的计算效率和存储需求成为核心挑战。由于嵌入式系统通常资源受限,传统的深度学习模型往往难以直接部署。因此,模型压缩和加速技术应运而生,旨在减少计算量、降低存储需求,同时尽可能保持模型的准确性。本文介绍几种常见的模型压缩与加速方法,包括剪枝、低秩分解、量化、权值共享、知识蒸馏等,并探讨如何综合应用这些技术来优化AI模型。1.常
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc