LA 2218 (半平面交) Triathlon

题意:

有n个选手,铁人三项有连续的三段,对于每段场地选手i分别以vi, ui 和 wi匀速通过。

对于每个选手,问能否通过调整每种赛道的长度使得他成为冠军(不能并列)。

分析:

粗一看,这不像一道计算几何的题目。

假设赛道总长度是1,第一段长x,第二段长y,第三段则是1-x-y

那么可以计算出每个选手完成比赛的时间Ti

对于选手i,若要成为冠军则有Ti < Tj (i ≠ j)

于是就有n-1个不等式,每个不等式都代表一个半平面。

在加上x>0, y>0, 1-x-y>0 这三个半平面一共有n+2个半平面。如果这些半平面交非空,则选手i可以成为冠军。

最终,还是转化成了半平面交的问题。

 

细节:

  • 对于半平面 ax+by+c > 0 所对应的向量(b, -a)是和系数的正负没有关系的,可以自己试验下。开始我纠结了好长时间
  • if(fabs(a) > fabs(b))    P = Point(-c/a, 0)
    
    else P = Point(0, -c/b);

    对于这段代码不是太清楚它的含义,因为不管怎样P都是在ax+by+c = 0 这条直线上的。我猜可能是减小浮点运算的误差吧?

 

  1 //#define LOCAL

  2 #include <cstdio>

  3 #include <cstring>

  4 #include <algorithm>

  5 #include <cmath>

  6 #include <vector>

  7 using namespace std;

  8 

  9 const double eps = 1e-6;

 10 const int maxn = 100 + 10;

 11 int v[maxn], u[maxn], w[maxn];

 12 

 13 struct Point

 14 {

 15     double x, y;

 16     Point(double x=0, double y=0):x(x), y(y) {}

 17 };

 18 typedef Point Vector;

 19 Point operator + (Point a, Point b) { return Point(a.x+b.x, a.y+b.y); }

 20 Point operator - (Point a, Point b) { return Point(a.x-b.x, a.y-b.y); }

 21 Vector operator * (Vector a, double p) { return Vector(a.x*p, a.y*p); }

 22 Vector operator / (Vector a, double p) { return Vector(a.x/p, a.y/p); }

 23 bool operator < (const Point& a, const Point& b)

 24 { return a.x < b.x || (a.x == b.x && a.y < b.y); }

 25 bool operator == (const Point& a, const Point& b)

 26 { return a.x == b.x && a.y == b.y; }

 27 double Dot(const Vector& a, const Vector& b) { return a.x*b.x + a.y*b.y; }

 28 double Cross(const Vector& a, const Vector& b) { return a.x*b.y - a.y*b.x; }

 29 double Length(const Vector& a) { return sqrt(Dot(a, a)); }

 30 Vector Normal(const Vector& a)

 31 {

 32     double l = Length(a);

 33     return Vector(-a.y/l, a.x);

 34 }

 35 

 36 double PolygonArea(const vector<Point>& p)

 37 {

 38     int n = p.size();

 39     double ans = 0.0;

 40     for(int i = 1; i < n-1; ++i)

 41         ans += Cross(p[i]-p[0], p[i+1]-p[0]);    

 42     return ans/2;

 43 }

 44 

 45 struct Line

 46 {

 47     Point P;

 48     Vector v;

 49     double ang;

 50     Line() {}

 51     Line(Point p, Vector v):P(p), v(v) { ang = atan2(v.y, v.x); }

 52     bool operator < (const Line& L) const

 53     {

 54         return ang < L.ang;

 55     }

 56 };

 57 

 58 bool OnLeft(const Line& L, Point p)

 59 {

 60     return Cross(L.v, p-L.P) > 0;

 61 }

 62 

 63 Point GetLineIntersevtion(const Line& a, const Line& b)

 64 {

 65     Vector u = a.P - b.P;

 66     double t = Cross(b.v, u) / Cross(a.v, b.v);

 67     return a.P + a.v*t;

 68 }

 69 

 70 vector<Point> HalfplaneIntersection(vector<Line> L)

 71 {

 72     int n = L.size();

 73     sort(L.begin(), L.end());

 74 

 75     int first, last;

 76     vector<Point> p(n);

 77     vector<Line> q(n);

 78     vector<Point> ans;

 79 

 80     q[first=last=0] = L[0];

 81     for(int i = 1; i < n; ++i)

 82     {

 83         while(first < last && !OnLeft(L[i], p[last-1])) last--;

 84         while(first < last && !OnLeft(L[i], p[first])) first++;

 85         q[++last] = L[i];

 86         if(fabs(Cross(q[last].v, q[last-1].v)) < eps)

 87         {

 88             last--;

 89             if(OnLeft(q[last], L[i].P)) q[last] = L[i];

 90         }

 91         if(first < last) p[last-1] = GetLineIntersevtion(q[last-1], q[last]);

 92     }

 93     while(first < last && !OnLeft(q[first], p[last-1])) last--;

 94     if(last - first <= 1)    return ans;

 95     p[last] = GetLineIntersevtion(q[first], q[last]);

 96 

 97     for(int i = first; i <= last; ++i)    ans.push_back(p[i]);

 98     return ans;

 99 }

100 

101 int main(void)

102 {

103     #ifdef    LOCAL

104         freopen("2218in.txt", "r", stdin);

105     #endif

106     

107     int n;

108     while(scanf("%d", &n) == 1 && n)

109     {

110         for(int i = 0; i < n; ++i) scanf("%d%d%d", &v[i], &u[i], &w[i]);

111         for(int i = 0; i < n; ++i)

112         {

113             int ok = 1;

114             double k = 10000;

115             vector<Line> L;

116             for(int j = 0; j < n; ++j) if(j != i)

117             {

118                 if(v[i]<=v[j] && u[i]<=u[j] && w[i]<=w[j]) { ok = 0; break; }

119                 if(v[i]>v[j] && u[i]>u[j] && w[i]>w[j]) continue;

120 

121                 double a = (k/v[j]-k/v[i]+k/w[i]-k/w[j]);

122                 double b = (k/u[j]-k/u[i]+k/w[i]-k/w[j]);

123                 double c = k/w[j]-k/w[i];

124                 //L.push_back(Line(Point(0, -c/b), Vector(b, -a)));

125                 Point P;

126                 Vector V(b, -a);

127                 if(fabs(a) > fabs(b))    P = Point(-c/a, 0);

128                 else P = Point(0, -c/b);

129                 L.push_back(Line(P, V));

130             }

131             if(ok)

132             {

133                 L.push_back(Line(Point(0, 0), Vector(0, -1)));

134                 L.push_back(Line(Point(0, 0), Vector(1, 0)));

135                 L.push_back(Line(Point(0, 1), Vector(-1, 1)));

136                 vector<Point> Poly = HalfplaneIntersection(L);

137                 if(Poly.empty()) ok = 0;

138             }

139             if(ok) puts("Yes"); else puts("No");

140         }

141     }

142 

143     return 0;

144 }
代码君

 

你可能感兴趣的:(RIA)