Polyp-PVT跑自己的数据集

GitHub - DengPingFan/Polyp-PVT: Polyp-PVT: Polyp Segmentation with Pyramid Vision TransformersPolyp-PVT: Polyp Segmentation with Pyramid Vision Transformers - GitHub - DengPingFan/Polyp-PVT: Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformershttps://github.com/DengPingFan/Polyp-PVT这个项目很简单,数据准备好就能跑,下面简单说下数据准备和小改动。

1.数据准备

这里我以建筑为例进行测试,注意这是二分类网络。

一级目录

 Polyp-PVT跑自己的数据集_第1张图片

二级目录 (train)

Polyp-PVT跑自己的数据集_第2张图片

 三级目录(train),注意标签的值是0和255

Polyp-PVT跑自己的数据集_第3张图片Polyp-PVT跑自己的数据集_第4张图片

 二级目录(val),这个项目的验证设计还是比较好的,考虑了去验证模型的泛化能力,我这里放了两种类型的数据,谷歌和高分的数据,其中最终的test评价数据还是用的高分数据,因为我的训练数据(train里面的数据)是高分数据

Polyp-PVT跑自己的数据集_第5张图片

 三级目录(val)

Polyp-PVT跑自己的数据集_第6张图片

 四级目录(val)

Polyp-PVT跑自己的数据集_第7张图片Polyp-PVT跑自己的数据集_第8张图片

 注意:train、val、images、masks、test这几个文件夹的名字请不要更改,保持一致,除非你愿意去找代码里的对应地方更改。

2.训练

下面是我用的train,其实基本没有改动,就是改了数据路径,还有就是train函数有一个地方不合理,稍微改了下,多了一个val_list参数来输入验证文件,原始的不太好用。

import torch
from torch.autograd import Variable
import os
import argparse
from datetime import datetime
from lib.pvt import PolypPVT
from utils.dataloader import get_loader, test_dataset
from utils.utils import clip_gradient, adjust_lr, AvgMeter
import torch.nn.functional as F
import numpy as np
import logging

import matplotlib.pyplot as plt

def structure_loss(pred, mask):
    weit = 1 + 5 * torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
    wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce='none')
    wbce = (weit * wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))

    pred = torch.sigmoid(pred)
    inter = ((pred * mask) * weit).sum(dim=(2, 3))
    union = ((pred + mask) * weit).sum(dim=(2, 3))
    wiou = 1 - (inter + 1) / (union - inter + 1)

    return (wbce + wiou).mean()


def test(model, path, dataset):

    data_path = os.path.join(path, dataset)
    image_root = '{}/images/'.format(data_path)
    gt_root = '{}/masks/'.format(data_path)
    model.eval()
    num1 = len(os.listdir(gt_root))
    test_loader = test_dataset(image_root, gt_root, 352)
    DSC = 0.0
    for i in range(num1):
        image, gt, name = test_loader.load_data()
        gt = np.asarray(gt, np.float32)
        gt /= (gt.max() + 1e-8)
        image = image.cuda()

        res, res1  = model(image)
        # eval Dice
        res = F.upsample(res + res1 , size=gt.shape, mode='bilinear', align_corners=False)
        res = res.sigmoid().data.cpu().numpy().squeeze()
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)
        input = res
        target = np.array(gt)
        N = gt.shape
        smooth = 1
        input_flat = np.reshape(input, (-1))
        target_flat = np.reshape(target, (-1))
        intersection = (input_flat * target_flat)
        dice = (2 * intersection.sum() + smooth) / (input.sum() + target.sum() + smooth)
        dice = '{:.4f}'.format(dice)
        dice = float(dice)
        DSC = DSC + dice

    return DSC / num1



def train(train_loader, model, optimizer, epoch, test_path, val_list):
    model.train()
    global best
    size_rates = [0.75, 1, 1.25] 
    loss_P2_record = AvgMeter()
    for i, pack in enumerate(train_loader, start=1):
        for rate in size_rates:
            optimizer.zero_grad()
            # ---- data prepare ----
            images, gts = pack
            images = Variable(images).cuda()
            gts = Variable(gts).cuda()
            # ---- rescale ----
            trainsize = int(round(opt.trainsize * rate / 32) * 32)
            if rate != 1:
                images = F.upsample(images, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
                gts = F.upsample(gts, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
            # ---- forward ----
            P1, P2= model(images)
            # ---- loss function ----
            loss_P1 = structure_loss(P1, gts)
            loss_P2 = structure_loss(P2, gts)
            loss = loss_P1 + loss_P2 
            # ---- backward ----
            loss.backward()
            clip_gradient(optimizer, opt.clip)
            optimizer.step()
            # ---- recording loss ----
            if rate == 1:
                loss_P2_record.update(loss_P2.data, opt.batchsize)
        # ---- train visualization ----
        if i % 20 == 0 or i == total_step:
            print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], '
                  ' lateral-5: {:0.4f}]'.
                  format(datetime.now(), epoch, opt.epoch, i, total_step,
                         loss_P2_record.show()))
    # save model 
    save_path = (opt.train_save)
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    torch.save(model.state_dict(), save_path +str(epoch)+ 'PolypPVT.pth')
    # choose the best model

    global dict_plot
   
    # test1path = './dataset/build/val/'
    if (epoch + 1) % 1 == 0:
        for dataset in val_list:
            dataset_dice = test(model, test_path, dataset)
            logging.info('epoch: {}, dataset: {}, dice: {}'.format(epoch, dataset, dataset_dice))
            print(dataset, ': ', dataset_dice)
            dict_plot[dataset].append(dataset_dice)
        meandice = test(model, test_path, 'test')
        dict_plot['test'].append(meandice)
        if meandice > best:
            best = meandice
            torch.save(model.state_dict(), save_path + 'PolypPVT.pth')
            torch.save(model.state_dict(), save_path +str(epoch)+ 'PolypPVT-best.pth')
            print('##############################################################################best', best)
            logging.info('##############################################################################best:{}'.format(best))


def plot_train(dict_plot=None, name = None):
    color = ['red', 'lawngreen', 'lime', 'gold', 'm', 'plum', 'blue']
    line = ['-', "--"]
    for i in range(len(name)):
        plt.plot(dict_plot[name[i]], label=name[i], color=color[i], linestyle=line[(i + 1) % 2])
        transfuse = {'CVC-300': 0.902, 'CVC-ClinicDB': 0.918, 'Kvasir': 0.918, 'CVC-ColonDB': 0.773,'ETIS-LaribPolypDB': 0.733, 'test':0.83}
        plt.axhline(y=transfuse[name[i]], color=color[i], linestyle='-')
    plt.xlabel("epoch")
    plt.ylabel("dice")
    plt.title('Train')
    plt.legend()
    plt.savefig('eval.png')
    # plt.show()
    
    
if __name__ == '__main__':
    dict_plot = {'GF2':[], 'GG':[], 'test':[]}  #注意这里是自己数据val里面的列表
    # name = ['GF2', 'GG', 'test']
    data_lists = ['GF2', 'GG']   #注意这里是自己数据val里面的列表,并且要去掉test,因为代码有个地方已经固定给了test文件的验证
    ##################model_name#############################
    model_name = 'gf_build'
    ###############################################
    parser = argparse.ArgumentParser()

    parser.add_argument('--epoch', type=int,
                        default=100, help='epoch number')

    parser.add_argument('--lr', type=float,
                        default=1e-3, help='learning rate')

    parser.add_argument('--optimizer', type=str,
                        default='AdamW', help='choosing optimizer AdamW or SGD')

    parser.add_argument('--augmentations',
                        default=True, help='choose to do random flip rotation')

    parser.add_argument('--batchsize', type=int,
                        default=4, help='training batch size')

    parser.add_argument('--trainsize', type=int,
                        default=448, help='training dataset size')

    parser.add_argument('--clip', type=float,
                        default=0.5, help='gradient clipping margin')

    parser.add_argument('--decay_rate', type=float,
                        default=0.1, help='decay rate of learning rate')

    parser.add_argument('--decay_epoch', type=int,
                        default=50, help='every n epochs decay learning rate')

    parser.add_argument('--train_path', type=str,
                        default='./dataset/build/train/',    #自己的数据路径
                        help='path to train dataset')

    parser.add_argument('--test_path', type=str,
                        default='./dataset/build/val/',      #自己的数据路径
                        help='path to testing Kvasir dataset')

    parser.add_argument('--train_save', type=str,
                        default='./model_pth/'+model_name+'/')

    opt = parser.parse_args()
    logging.basicConfig(filename='train_log.log',
                        format='[%(asctime)s-%(filename)s-%(levelname)s:%(message)s]',
                        level=logging.INFO, filemode='a', datefmt='%Y-%m-%d %I:%M:%S %p')

    # ---- build models ----
    # torch.cuda.set_device(0)  # set your gpu device
    model = PolypPVT().cuda()

    best = 0

    params = model.parameters()

    if opt.optimizer == 'AdamW':
        optimizer = torch.optim.AdamW(params, opt.lr, weight_decay=1e-4)
    else:
        optimizer = torch.optim.SGD(params, opt.lr, weight_decay=1e-4, momentum=0.9)

    print(optimizer)
    image_root = '{}/images/'.format(opt.train_path)
    gt_root = '{}/masks/'.format(opt.train_path)

    train_loader = get_loader(image_root, gt_root, batchsize=opt.batchsize, trainsize=opt.trainsize,
                              augmentations=opt.augmentations)
    total_step = len(train_loader)

    print("#" * 20, "Start Training", "#" * 20)

    for epoch in range(1, opt.epoch):
        adjust_lr(optimizer, opt.lr, epoch, 0.1, 200)
        train(train_loader, model, optimizer, epoch, opt.test_path, data_lists)
    
    # plot the eval.png in the training stage
    # plot_train(dict_plot, name)

另外,utils/dataloader.py脚本里的数据加载函数下面红框改成和我一致,不然就算你打开了数据增强也不起作用

Polyp-PVT跑自己的数据集_第9张图片

改完上面以后,命令行运行下面命令就开始训练了。

python -W ignore Train.py

3.测试

测试其实没什么好说的,把训练好的模型路径给一下,数据路径给一下就行了,命令行运行

python -W ignore Test.py

 下面是我用的

import torch
import torch.nn.functional as F
import numpy as np
import os, argparse
# from scipy import misc
from lib.pvt import PolypPVT
from utils.dataloader import test_dataset
import cv2

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--testsize', type=int, default=448, help='testing size')
    parser.add_argument('--pth_path', type=str, default='./model_pth/gf_build/PolypPVT.pth')
    opt = parser.parse_args()
    model = PolypPVT()
    model.load_state_dict(torch.load(opt.pth_path))
    model.cuda()
    model.eval()
    for _data_name in ['GF2', 'GG', 'test']:

        ##### put data_path here #####
        data_path = './dataset/build/val/{}'.format(_data_name)
        ##### save_path #####
        save_path = './result_map/PolypPVT/{}/'.format(_data_name)

        if not os.path.exists(save_path):
            os.makedirs(save_path)
        image_root = '{}/images/'.format(data_path)
        gt_root = '{}/masks/'.format(data_path)
        num1 = len(os.listdir(gt_root))
        test_loader = test_dataset(image_root, gt_root, 352)
        for i in range(num1):
            image, gt, name = test_loader.load_data()
            gt = np.asarray(gt, np.float32)
            gt /= (gt.max() + 1e-8)
            image = image.cuda()
            P1,P2 = model(image)
            res = F.upsample(P1+P2, size=gt.shape, mode='bilinear', align_corners=False)
            res = res.sigmoid().data.cpu().numpy().squeeze()
            res = (res - res.min()) / (res.max() - res.min() + 1e-8)
            cv2.imwrite(save_path+name, res*255)
        print(_data_name, 'Finish!')

4.测试结果 

我这里跑了80epoch,但是其实在50以后loss就不下降了,后面训练也没什么大的意义 ,模型总的来说还是不好出效果的,可能用于遥感还要调整很多吧。

Polyp-PVT跑自己的数据集_第10张图片 Polyp-PVT跑自己的数据集_第11张图片Polyp-PVT跑自己的数据集_第12张图片

题外话:有什么新的比较好的网络可以评论推荐给我,我来复现贴出来大家一起用一用 

你可能感兴趣的:(transformer,深度学习,计算机视觉,人工智能)