Pytorch中自定义神经网络卷积核权重
自定义神经网络卷积核权重
神经网络被深度学习者深深喜爱,究其原因之一是神经网络的便利性,使用者只需要根据自己的需求像搭积木一样搭建神经网络框架即可,搭建过程中我们只需要考虑卷积核的尺寸,输入输出通道数,卷积方式等等。
我们使用惯了自带的参数后,当我们要自定义卷积核参数时,突然有种无从下手的感觉,哈哈哈哈哈哈哈哈~~,请允许我开心下,嘿嘿!因为笔者在初入神经网络时也遇到了同样的问题,当时踩了太多坑了,宝宝想哭(灬ꈍ ꈍ灬)!让我悲伤的是,找遍了各个资源区,也没有找到大家的分享。因此,我想把我的方法写出来,希望能帮助到各位宝宝,开心(*^▽^*)。
话不多说,正文开始…
2.1 dtt系数权重Code
def dtt_matrix(n): 这个函数是nn的DTT系数矩阵,笔者的是88的系数矩阵。
def dtt_kernel(out_channels, in_channels, kernel_size): 这个方法是设定权重,权重需要包括4个参数(输出通道数,输入通道数,卷积核高,卷积核宽),这里有很多细节要注意,宝宝们要亲自躺下坑,才能映像深刻也,我就不深究了哈,(#^.^#)。
复制代码
import numpy as np
import torch
import torch.nn as nn
def dtt_matrix(n):
dtt_coe = np.zeros([n, n], dtype=‘float32’)
for i in range(0, n):
dtt_coe[0, i] = 1/np.sqrt(n)
dtt_coe[1, i] = (2i + 1 - n)np.sqrt(3/(n(np.power(n, 2) - 1)))
for i in range(1, n-1):
dtt_coe[i+1, 0] = -np.sqrt((n-i-1)/(n+i+1)) * np.sqrt((2(i+1)+1)/(2*(i+1)-1)) * dtt_coe[i, 0]
dtt_coe[i+1, 1] = (1 + (i+1)(i+2)/(1-n)) * dtt_coe[i+1, 0]
dtt_coe[i+1, n-1] = np.power(-1, i+1) * dtt_coe[i+1, 0]
dtt_coe[i+1, n-2] = np.power(-1, i+1) * dtt_coe[i+1, 1]
for j in range(2, int(n/2)):
t1 = (-(i+1) * (i+2) - (2j-1) * (j-n-1) - j)/(j*(n-j))
t2 = ((j-1) * (j-n-1))/(j * (n-j))
dtt_coe[i+1, j] = t1 * dtt_coe[i+1, j-1] + t2 * dtt_coe[i+1, j-2]
dtt_coe[i+1, n-j-1] = np.power(-1, i-1) * dtt_coe[i+1, j]
return dtt_coe
def dtt_kernel(out_channels, in_channels, kernel_size):
dtt_coe = dtt_matrix(kernel_size)
dtt_coe = np.array(dtt_coe)
dtt_weight = np.zeros([out_channels, in_channels, kernel_size, kernel_size], dtype='float32')
temp = np.zeros([out_channels, in_channels, kernel_size, kernel_size], dtype='float32')
order = 0
for i in range(0, kernel_size):
for j in range(0, kernel_size):
dtt_row = dtt_coe[i, :]
dtt_col = dtt_coe[:, j]
dtt_row = dtt_row.reshape(len(dtt_row), 1)
dtt_col = dtt_col.reshape(1, len(dtt_col))
# print("dtt_row: ", dtt_row)
# print("dtt_col: ", dtt_col)
# print("i:", i, "j: ", j)
temp[order, 0, :, :] = np.dot(dtt_row, dtt_col)
order = order + 1
for i in range(0, in_channels):
for j in range(0, out_channels):
# dtt_weight[j, i, :, :] = flip_180(temp[j, 0, :, :])
dtt_weight[j, i, :, :] = temp[j, 0, :, :]
return torch.tensor(dtt_weight)
复制代码
2.2 'same’方式卷积
如果宝宝需要保持卷积前后的数据尺寸保持不变,即’same’方式卷积,那么你直接使用我这个卷积核(提一下哟,这个我也是借自某位前辈的,我当时没备注哇,先在这里感谢那位前辈,前辈如果路过,还请留言小生哈,(#.#))。
复制代码
import torch.utils.data
from torch.nn import functional as F
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn.functional import pad
from torch.nn.modules import Module
from torch.nn.modules.utils import _single, _pair, _triple
class _ConvNd(Module):
def init(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, transposed, output_padding, groups, bias):
super(_ConvNd, self).init()
if in_channels % groups != 0:
raise ValueError(‘in_channels must be divisible by groups’)
if out_channels % groups != 0:
raise ValueError(‘out_channels must be divisible by groups’)
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.output_padding = output_padding
self.groups = groups
if transposed:
self.weight = Parameter(torch.Tensor(
in_channels, out_channels // groups, *kernel_size))
else:
self.weight = Parameter(torch.Tensor(
out_channels, in_channels // groups, *kernel_size))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter(‘bias’, None)
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def __repr__(self):
s = ('{name}({in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0,) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is None:
s += ', bias=False'
s += ')'
return s.format(name=self.__class__.__name__, **self.__dict__)
class Conv2d(_ConvNd):
def init(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(Conv2d, self).init(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, _pair(0), groups, bias)
def forward(self, input):
return conv2d_same_padding(input, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
def conv2d_same_padding(input, weight, bias=None, stride=1, padding=1, dilation=1, groups=1):
input_rows = input.size(2)
filter_rows = weight.size(2)
effective_filter_size_rows = (filter_rows - 1) * dilation[0] + 1
out_rows = (input_rows + stride[0] - 1) // stride[0]
input_cols = input.size(3)
filter_cols = weight.size(3)
effective_filter_size_cols = (filter_cols - 1) * dilation[1] + 1
out_cols = (input_cols + stride[1] - 1) // stride[1]
padding_needed = max(0, (out_rows - 1) * stride[0] + effective_filter_size_rows -input_rows)
padding_rows = max(0, (out_rows - 1) * stride[0] +
(filter_rows - 1) * dilation[0] + 1 - input_rows)
rows_odd = (padding_rows % 2 != 0)
padding_cols = max(0, (out_cols - 1) * stride[1] +
(filter_cols - 1) * dilation[1] + 1 - input_cols)
cols_odd = (padding_cols % 2 != 0)
if rows_odd or cols_odd:
input = pad(input, [0, int(cols_odd), 0, int(rows_odd)])
return F.conv2d(input, weight, bias, stride,
padding=(padding_rows // 2, padding_cols // 2),
dilation=dilation, groups=groups)
复制代码
2.3 将权重赋给卷积核
此处才是宝宝们最关心的吧,不慌,这就来了哈,开心(▽),进入正文了(#.#)。
这里给了一个简单的网络模型(一个固定卷积+3个全连接,全连接是11的Conv2d),代码里我给了注释,宝宝们应该能秒懂滴,(▽*)!
复制代码
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import dtt_kernel
import util
import paddingSame
dtt_weight1 = dtt_kernel.dtt_kernel(64, 2, 8)
class DttNet(nn.Module):
def init(self):
super(DttNet, self).init()
self.conv1 = paddingSame.Conv2d(2, 64, 8)
# 将权重赋给卷积核
self.conv1.weight = nn.Parameter(dtt_weight1, requires_grad=False)
self.fc1 = util.fc(64, 512, 1)
self.fc2 = util.fc(512, 128, 1)
self.fc3 = util.fc(128, 2, 1, last=True)
def forward(self, x):
x = self.conv1(x)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
复制代码
2.4 补充我的util类
复制代码
import torch.nn as nn
def conv(in_channels, out_channels, kernel_size, stride=1, dilation=1, batch_norm=True):
if batch_norm:
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
else:
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)),
nn.ReLU()
)
def fc(in_channels, out_channels, kernel_size, stride=1, bias=True, last=False):
if last:
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)),
)
else:
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
复制代码
我的
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn.functional import pad
from torch.nn.modules import Module
from torch.nn.modules.utils import _single, _pair, _triple
from torch.nn import init
class _ConvNd(Module):
__constants__ = ['stride', 'padding', 'dilation', 'groups', 'bias',
'padding_mode', 'output_padding', 'in_channels',
'out_channels', 'kernel_size']
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, transposed, output_padding,
groups, bias, padding_mode):
super(_ConvNd, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.output_padding = output_padding
self.groups = groups
self.padding_mode = padding_mode
if transposed:
self.weight = Parameter(torch.Tensor(
in_channels, out_channels // groups, *kernel_size))
else:
self.weight = Parameter(torch.Tensor(
out_channels, in_channels // groups, *kernel_size))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def extra_repr(self):
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0,) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is None:
s += ', bias=False'
if self.padding_mode != 'zeros':
s += ', padding_mode={padding_mode}'
return s.format(**self.__dict__)
def __setstate__(self, state):
super(_ConvNd, self).__setstate__(state)
if not hasattr(self, 'padding_mode'):
self.padding_mode = 'zeros'
class Conv726d(_ConvNd):
def init(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1,
bias=True, padding_mode=‘zeros’):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(Conv726d, self).init(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, _pair(0), groups, bias, padding_mode)
def conv2d_forward(self, input, weight):
if self.padding_mode == 'circular':
expanded_padding = ((self.padding[1] + 1) // 2, self.padding[1] // 2,
(self.padding[0] + 1) // 2, self.padding[0] // 2)
return F.conv2d(F.pad(input, expanded_padding, mode='circular'),
weight*torch.tensor([[[0, 1, 0], [1, 0, 1], [0, 1, 0]]]).cuda(), self.bias, self.stride,
_pair(0), self.dilation, self.groups)
return F.conv2d(input, weight*torch.tensor([[[0, 1, 0], [1, 0, 1], [0, 1, 0]]]).cuda(), self.bias, self.stride,
self.padding, self.dilation, self.groups)
def forward(self, input):
return self.conv2d_forward(input, self.weight)
但行好事 莫问前程