- 详解DeepSeek模型底层原理及和ChatGPT区别点
瞬间动力
语言模型机器学习AI编程云计算阿里云
一、DeepSeek大模型原理架构基础DeepSeek基于Transformer架构,Transformer架构主要由编码器和解码器组成,在自然语言处理任务中,通常使用的是Transformer的解码器部分。它的核心是自注意力机制(Self-Attention),这个机制允许模型在处理输入序列时,关注序列中不同位置的信息。例如,在处理句子“Thecatchasedthemouse”时,自注意力机制
- Web安全攻防入门教程——hvv行动详解
白帽子黑客罗哥
web安全安全网络安全pythonjava
Web安全攻防入门教程Web安全攻防是指在Web应用程序的开发、部署和运行过程中,保护Web应用免受攻击和恶意行为的技术与策略。这个领域不仅涉及防御措施的实现,还包括通过渗透测试、漏洞挖掘和模拟攻击来识别潜在的安全问题。本教程将带你入门Web安全攻防的基础概念、常见攻击类型、防御技术以及一些实战方法。一、Web安全基础Web应用安全的三大核心目标(CIA三原则)机密性(Confidentialit
- 《深度学习实战》第12集:大模型的未来与行业应用
带娃的IT创业者
深度学习实战深度学习
深度学习实战|第12集:大模型的未来与行业应用随着深度学习技术的快速发展,大模型(如GPT、LLaMA、Bloom等)已经成为人工智能领域的核心驱动力。本篇博客将探讨大模型的发展趋势及其在医疗、金融、教育等行业的实际应用,并通过2个实战项目展示如何使用开源大模型构建问答系统。此外,我们还会分析大模型的前沿技术方向。图示:大模型发展历程与行业应用场景1.大模型发展历程图以下是大模型从早期到现在的关键
- 深度学习突破:LLaMA-MoE模型的高效训练策略
人工智能大模型讲师培训咨询叶梓
深度学习llama人工智能Llama-Moe大模型语言模型
在人工智能领域,大模型(LLM)的崛起带来了前所未有的进步,但随之而来的是巨大的计算资源需求。为了解决这一问题,Mixture-of-Expert(MoE)模型架构应运而生,而LLaMA-MoE正是这一架构下的重要代表。LLaMA-MoE是一种基于LLaMA系列和SlimPajama的MoE模型,它通过将LLaMA的前馈网络(FFNs)划分为稀疏专家,并为每层专家插入top-K个门,从而显著减小模
- 深度学习day1
孤城laugh
深度学习人工智能笔记学习机器学习
深度学习day11.深度学习与机器学习的区别1.1特征提取方面1.2数据量与计算性能要求1.3算法代表2.深度学习框架之TensorFlow2.1TensorFlow基础2.2TensorFlow基础知识1.**张量(Tensor)**:多维数组、多维列表2.**变量(Variable)**:用于表示程序处理的共享持久状态3.**图与函数**4.**可视化学习(TensorBoard)**:用来展
- 系统对接方案_浅谈RPA系统
weixin_39881760
系统对接方案
首先本文是有感而发,其次是我本身是大数据和人工智能领域产品多年从业者,并不局限于RPA领域,做过一些RPA项目也和客户沟通并且提供过顾问和咨询服务,所以有一定理解。从网上可见的大部分文章包括本问题下面的回答中,都可以看到,大部分是宏观回答,从狭义来说,RPA可以是一个软件工具、可以是一套系统也可以是一个平台;RPA可以让办公自动化、业务流程自动化。从广义来说,任何一个可被规则化且突发、未知情况少的
- 双盲机制(信念,欲望):模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力人工智能androidpython自然语言处理pycharm
如何让人工智能生成的说服性对话更接近真实的日常交流目录如何让人工智能生成的说服性对话更接近真实的日常交流**一、核心创新点解析****1.双盲对话生成机制****2.因果心理理论指导****3.多智能体协作框架ToMMA****二、实验结论****三、论文贡献**怎么代码中实现Agent的双盲场景假设代码实现代码解释注意事项模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
- 【Swift 算法实战】判断数组中是否存在重复元素
网罗开发
Swiftvue.jsleetcode算法
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 深度学习现状与未来发展趋势分析报告(深度学习还是主流吗?)
与光同尘 大道至简
深度学习人工智能
此博客分析深度学习当前的主流应用领域、其受关注度的变化趋势、可能的技术替代或补充方案、产业界和学术界的不同发展方向,以及影响其受关注度变化的核心因素。报告将包括结构化分析(背景、现状、挑战、未来趋势)、数据驱动(市场趋势、论文发表量等数据支持)以及行业案例分析,以展示某些行业如何逐步减少对深度学习的依赖。背景深度学习的概念与发展历程:深度学习(DeepLearning)是机器学习中的一类方法,源于
- Python项目-基于深度学习的校园人脸识别考勤系统
天天进步2015
Python项目实战python
引言随着人工智能技术的快速发展,深度学习在计算机视觉领域的应用日益广泛。人脸识别作为其中的一个重要分支,已经在安防、金融、教育等多个领域展现出巨大的应用价值。本文将详细介绍如何使用Python和深度学习技术构建一个校园人脸识别考勤系统,该系统能够自动识别学生身份并记录考勤信息,大大提高了考勤效率,减轻了教师的工作负担。系统概述功能特点实时人脸检测与识别:能够从摄像头视频流中实时检测并识别人脸自动考
- python常见面试题 基础篇 (一)
航叔啦
Python基础篇1:为什么学习Python家里有在这个IT圈子里面,也想让我接触这个圈子,然后给我建议学的Python,然后自己通过百度和向有学过Python的同学了解了Python,Python这门语言,入门比较简单,它简单易学,生态圈比较强大,涉及的地方比较多,特别是在人工智能,和数据分析这方面。在未来我觉得是往自动化,人工智能这方面发展的,所以学习了Python2:通过什么途径学习Pyth
- 一次性了解OpenAI的“草莓”(Strawberry)超强实力
金融街小单纯
预测模型生成式人工智能人工智能
OpenAI预计在秋季推出的代号为“草莓”(Strawberry)的新AI模型,是其在AI推理领域的一项重要突破。该项目的成功也将为人类实现通用人工智能(AGI)目标迈出重要一步。使模型不仅能够生成查询答案,还能处理复杂的科学和数学问题,进行自主可靠的“深度研究”。“草莓”项目是OpenAI在AI推理领域的一项重要突破具备高级推理能力、长任务规划、超大规模训练等核心功能与技术特点。该项目的推出将进
- CORS 跨域资源共享
disgare
计算机基础csrf服务器ajax
CORS跨域资源共享跨域同源策略为什么有跨域限制发生跨域时,允许进行的操作跨域限制的资源处理跨域常用的方法CORS请求简单请求复杂请求后端支持跨域代码支持CORS支持JSONP支持ng浏览器一般使用CORS(跨域资源共享)来处理跨域问题。同源导致了不同源数据不能互相访问,而在开发中我们很多时候需要用第一个页面的脚本访问第二个页面里的数据,所以制定了一些允许跨域的策略跨域同源策略在了解真正的网络攻击
- 深度解析大模型蒸馏方法:原理、差异与案例
赵大仁
AI人工智能大语言模型人工智能
深度解析大模型蒸馏方法:原理、差异与案例1.引言随着深度学习的飞速发展,大模型(LargeModels)如GPT、BERT、ViT逐渐成为AI领域的主流。然而,这些模型通常参数量庞大,计算开销极高,不适用于移动端或低算力环境。因此,模型蒸馏(KnowledgeDistillation,KD)作为一种模型压缩技术,成为高效部署大模型的重要手段。在本篇文章中,我们将深入探讨不同类型的模型蒸馏方法,并通
- 基于opencv消除图片马赛克
小苗爸爸
opencv人工智能计算机视觉
以下是一个基于Python的图片马赛克消除函数实现,结合了图像处理和深度学习方法。由于马赛克消除涉及复杂的图像重建任务,建议根据实际需求选择合适的方法:importcv2importnumpyasnpfromPILimportImagedefremove_mosaic(image_path,output_path,method='traditional',block_size=10,scale_f
- 【AI深度学习基础】Pandas完全指南入门篇:数据处理的瑞士军刀 (含完整代码)
arbboter
人工智能人工智能深度学习pandas数据处理数据分析数据清洗数据分析效率提升
Pandas系列文章导航入门篇进阶篇终极篇一、引言在大数据与AI驱动的时代,数据预处理和分析是深度学习与机器学习的基石。Pandas作为Python生态中最强大的数据处理库,以其灵活的数据结构(如DataFrame和Series)和丰富的功能(数据清洗、转换、聚合等),成为数据科学家和工程师的核心工具。Pandas以Series(一维标签数组)和DataFrame(二维表格)为核心数据结构,提供高
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- 安全渗透测试的全面解析与实践
软件测试web安全
引言随着网络安全威胁的日益增加,企业和组织对自身系统的安全性提出了更高的要求。安全渗透测试(PenetrationTesting,简称渗透测试)作为主动发现和修复系统安全漏洞的重要手段,已成为安全防护体系中的关键环节。本文将深入探讨安全渗透测试的概念、流程、方法、工具及最佳实践,帮助读者全面理解渗透测试的价值与应用。一、安全渗透测试概述1.什么是安全渗透测试?安全渗透测试是一种模拟黑客攻击的安全评
- Github 2024-09-30 开源项目周报 Top15
老孙正经胡说
github开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,本周(2024-09-30统计)共有15个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Python项目7JupyterNotebook项目2Dart项目1Ruby项目1HTML项目1C#项目1TypeScript项目1Rust项目1非开发语言项目1AutoGPT:人工智能革命的先锋创建周期:486天开发语言:Python协议类型:MI
- 免费分享,清华大学DeepSeek 1-6版教程全析,探索未知的技术新领域推文
qq_35008050
pdf
免费分享,清华大学DeepSeek1-6版教程全析,探索未知的技术新领域在科技飞速发展的今天,人工智能领域不断推陈出新,DeepSeek作为其中的一颗新星备受瞩目。如今,一份来自清华大学的珍贵礼物——DeepSeek1-6版教程,正免费向大家敞开知识的大门,助力我们深入探索未知的技术新领域。第一版:基础奠基,开启DeepSeek之旅对于初次接触DeepSeek的人来说,第一版教程就像是一座坚实的基
- 对“预训练”的理解
衣衣困
深度学习神经网络自然语言处理
预训练有什么用传统的机器学习是偏数学的,对数据的量不做过多要求,而深度学习的项目通常是有大量的数据可供使用。在平常的任务或者项目中,我们可能并没有大量数据,只有少量数据,在这时我们就可以通过“借用”有大数据支持的模型的参数,作为基准,这样就能提高效率和准确率。因为他们神经网络的浅层是相似的,也就是说,在任务相似的情况下,可以用已有的模型即“预训练”好的模型参数实现小数据量的模型训练。预训练可以节省
- 国内外优秀AI外呼产品推荐
MARS_AI_
人工智能自然语言处理sassnlp信息与通信
在数字化转型浪潮中,AI外呼系统凭借其高效率、低成本、精准交互的特点,成为企业客户触达与服务的核心工具。本文基于行业实践与技术测评,推荐国内外表现突出的AI外呼产品,重点解析国内标杆企业云蝠智能,并对比其他代表性产品,助企业快速选型。一、云蝠智能:大模型驱动的“性价比之王”作为国内AI外呼领域的领军者,云蝠智能以神鹤AI对话大模型为核心技术,深度融合自然语言处理(NLP)、语音识别(ASR)与语音
- GPO 配置的 4 种常见安全错误及安全优化策略
前端
组策略对象(GPO)是微软ActiveDirectory(AD)的核心功能,使管理员能够管理和保护AD环境。即使是一个被攻陷的账户也可能导致整个组织的安全受损,影响多个用户和系统。因此,解决GPO的安全威胁和漏洞对于维护AD环境的完整性至关重要。一、常见的GPO安全错误以下是管理员常见的GPO安全错误:GPO设置配置错误:不安全或配置不当的GPO可能为攻击者提供直接途径,利用AD环境的漏洞进行攻击
- 2025人工智能AI与电商革命:人工智能如何塑造在线市场的未来报告300+份汇总解读|附PDF下载
数据挖掘深度学习人工智能算法
原文链接:https://tecdat.cn/?p=40894在当今数字化时代,电子商务与人工智能的融合正重塑商业格局。本报告汇总洞察基于Prosus、Dealroom.co发布的《TheAIxEcommerceRevolution:HowAIisshapingtheFutureofOnlineMarketplaces》及文末308份电子商务和人工智能行业研究报告的数据,报告合集已分享在交流群,阅
- 大模型中的Token究竟是什么?从原理到作用深度解析
自然语言处理算法人工智能
引言在人工智能领域,大型语言模型(LLM)如GPT-4、Claude等系统性地改变了人机交互方式。这些模型处理文本的核心单元被称为"Token",这个看似简单的概念实则蕴含复杂的工程设计和语言学原理。本文将深入解析Token的本质、技术实现及其在模型运作中的关键作用。Token化技术全景图核心处理流程原始文本→预处理→分词算法→词表映射→模型输入↓↓↓大小写转换子词拆分策略特殊Token添加标点规
- ChatGPT与DeepSeek:开源与闭源的AI模型之争
我们的五年
游戏实现chatgpt人工智能
目录一、模型架构与技术原理二、性能能力与应用场景三、用户体验与部署灵活性四、成本与商业模式五、未来展望与市场影响六、总结随着人工智能技术的飞速发展,ChatGPT和DeepSeek作为两大领先的AI语言模型,成为了行业内外关注的焦点。它们在技术架构、应用场景、用户体验和成本等方面存在显著差异,尤其是开源与闭源的模式,使得两者在市场竞争中各有优势。本文将对ChatGPT和DeepSeek进行全面对比
- 郑州人工智能计算中心成果发布会成功举办 埃文科技共建AI生态
人工智能
2024年3月1日,由郑州市科学技术局主办,郑州联通、华为技术有限公司联合承办的郑州人工智能计算中心成果发布会在郑州隆重举行,郑州埃文科技有限公司(以下简称“埃文科技”)作为河南省人工智能领军企业受邀参会。大会以“全面拥抱智能化,共筑算力新底座”为主题,郑州市委副书记、代市长庄建球,河南联通党委书记、总经理华豫民等领导,以及300余位行业专家、企业代表齐聚一堂,共同见证中部地区首个政府主导的智能算
- DeepSeek×博云AIOS:突破算力桎梏,开启AI普惠新纪元
deepseek
背景在全球人工智能技术高速迭代的背景下,算力成本高企、异构资源适配复杂、模型部署效率低下等问题,始终是制约企业AI规模化应用的关键。DeepSeek以创新技术直击产业痛点,而博云先进算力管理平台AIOS的全面适配,则为这一技术落地提供了坚实底座。两者的深度融合,正在重塑AI产业化的技术范式。DeepSeek:算法创新定义AI新范式DeepSeek凭借技术突破,为AI领域树立了新标杆:DeepSee
- 赋能农业数字化转型 用DeepSeek大模型开启智慧农业新纪元
jingwang-cs
人工智能人工智能后端
赋能农业数字化转型用DeepSeek大模型开启智慧农业新纪元当农业遇见DeepSeek大模型:从经验驱动到数据智能的跨越传统农业依赖“看天吃饭”,而「智慧农业」平台依托公司自主研发的农业大模型,深度融合DeepSeek前沿AI技术,构建“数据-模型-决策”全链路智能服务体系。通过深度学习历史种植数据、气象信息、土壤墒情等多维农业要素,平台可精准预测病虫害风险、产量波动及市场趋势,为农户提供科学种植
- spaCy 入门:自然语言处理的高效工具
zru_9602
人工智能自然语言处理人工智能
spaCy入门:自然语言处理的高效工具引言spaCy是一个功能强大的开源Python库,专注于工业级的自然语言处理(NLP)。它以其高效的性能、简洁的API和对多种语言的支持而闻名。无论是进行文本分析、信息提取还是构建智能聊天机器人,spaCy都是一个不可或缺的工具。本文将从零开始,介绍spaCy的基本功能和使用方法,并通过示例代码帮助你快速上手。1.安装spaCy在开始之前,首先需要安装spaC
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi