谷歌人工智能写作项目:神经网络伪原创
机器学习是人工智能的一个分支写作猫。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。
机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。从学习方式来讲,机器学习包括监督式学习、非监督式学习、半监督式学习和强化学习。
以算法来分类,则有回归算法、基于实例的算法、正则化方法、决策树学习、贝叶斯方法、基于核的算法、聚类算法、关联规则学习、遗传算法、人工神经网络、深度学习、降低维度算法和集成算法。
因此,深度学习又是机器学习的分支。深度学习是一种以人工神经网络为架构,对数据进行表征学习的算法。
如今,单纯的深度学习已经成熟,结合了深度学习的图神经网络将端到端学习与归纳推理相结合,有望解决深度学习无法处理的关系推理、可解释性等一系列问题。
强大的图神经网络将会类似于由神经元等节点所形成网络的人的大脑,机器有望成为具备常识,具有理解、认知能力的AI。
机器阅读和理解人类语言比尔·盖茨曾经发表过对人工智能的一些看法,他认为人工智能会有惊人的影响,并且大多都是好的。比如帮助学生,帮助查看分析图像,帮助我们了解发生了什么。
同时他也提出,人工智能还有一件事还不能实现,而一旦实现,将帮助人们解决更多的难题,这一点就是:阅读。
“所有相关的公司都在努力实现这一点,比如有一本生物学的书,人工智能会不会阅读它,然后通过考试或者操作一项实验。
这是最后一个难题,目前视力问题解决了,语言能力也不错,甚至翻译也很好,现在我们都在攻克阅读问题。一旦有了阅读能力,就可以帮助科学发明,这将会非常了不起,可以更好地帮助人们解决问题。
人工智能势头很猛,发展比我们预期的更快,像那场围棋比赛的结果,就是一个惊人的里程碑。”是的,让机器正确理解人类知识和语言的技术比起图片和声音识别技术来说更加困难。
一是因为人类语言的“余地”,语言作为一种表达方式,是非常偏向于模糊和不确定的。
二是因为人类语言会因环境变化而变化,对它的理解多数是通过当时情境的作用,而这一点又让语言理解的复杂程度加倍,机器是难以标记和模拟相关环境的。
尽管互联网上已经包含了足够多的语言文字信息,我们还是无法以机器能够理解的形式将这些信息真正传递给它们。
因此,比尔·盖茨认为让机器学会阅读和理解人类语言是一个里程碑式事件,而微软、谷歌、Facebook和IBM等公司也在发力机器学习阅读理解能力。
从某种意义上来讲,我的理解是,机器阅读人类语言应该也是从弱人工智能到强人工智能跨越的标志之一。机器理解和创造自己随着越来越多的这类技术变得成熟,机器将会在各种各样的任务上超越人类。
那么,机器是否可以理解自己呢?甚至机器是否可以设计和编码自己本身呢?可以想象一下,一旦机器做到这一步,那将会带来什么样的颠覆。
GoogleBrain团队在探索这个领域,他们称之为“自动机器学习”方向。顶尖的人工智能专家们发现,设计机器学习系统本身这样一个他们最困难的工作之一,也有可能通过AI系统自动完成。
甚至在一些场景下,AI系统自己开发的AI系统已经赶上甚至超过了人类专家。
国外著名科技记者StevenLevy在他刊于BackChannel的文章《谷歌如何将自己重塑为一家“机器学习为先”的公司》中提到,谷歌大脑负责人JeffDean表示,如果现在让他改写谷歌的基础设施,大部分代码都不会由人编码,而将由机器学习自动生成。
学术界也有相关研究,伯克利的KeLi和JitendraMalik在他们日前提交的论文《LearningtoOptimize》中提出了让算法自我优化的方法。
他们在论文摘要中写道,“算法设计是一个费力的过程,通常需要许多迭代的思想和验证。在本文中,我们探讨自动化算法设计,并提出了一种方法学习自动优化算法”。
从强化学习的角度入手,KeLi和JitendraMalik使用指导性策略搜索来让AI学习优化算法,并且证明了他们所设计的算法在收敛速度和/或最终目标值方面优于现有的手工编程开发的算法。
本质上说,世界上所有的数据都是拓扑结构,也就是网络结构,如果能够把这些网络数据真正的收集、融合起来,这确实是实现了AI智能的第一步。
所以,如何利用深度学习处理这些复杂的拓扑数据,如何开创新的处理图数据以及知识图谱的智能算法是AI的一个重要方向。
深度学习在多个领域的成功主要归功于计算资源的快速发展(如GPU)、大量训练数据的收集,还有深度学习从欧几里得数据(如图像、文本和视频)中提取潜在表征的有效性。
但是,尽管深度学习已经在欧几里得数据中取得了很大的成功,但从非欧几里得域生成的数据已经取得更广泛的应用,它们需要有效分析。
如在电子商务领域,一个基于图的学习系统能够利用用户和产品之间的交互以实现高度精准的推荐。在化学领域,分子被建模为图,新药研发需要测定其生物活性。
在论文引用网络中,论文之间通过引用关系互相连接,需要将它们分成不同的类别。自2012年以来,深度学习在计算机视觉以及自然语言处理两个领域取得了巨大的成功。
假设有一张图,要做分类,传统方法需要手动提取一些特征,比如纹理,颜色,或者一些更高级的特征。然后再把这些特征放到像随机森林等分类器,给到一个输出标签,告诉它是哪个类别。
而深度学习是输入一张图,经过神经网络,直接输出一个标签。特征提取和分类一步到位,避免了手工提取特征或者人工规则,从原始数据中自动化地去提取特征,是一种端到端(end-to-end)的学习。
相较于传统的方法,深度学习能够学习到更高效的特征与模式。图数据的复杂性对现有机器学习算法提出了重大挑战,因为图数据是不规则的。
每张图大小不同、节点无序,一张图中的每个节点都有不同数目的邻近节点,使得一些在图像中容易计算的重要运算(如卷积)不能再直接应用于图。此外,现有机器学习算法的核心假设是实例彼此独立。
然而,图数据中的每个实例都与周围的其它实例相关,含有一些复杂的连接信息,用于捕获数据之间的依赖关系,包括引用、朋友关系和相互作用。最近,越来越多的研究开始将深度学习方法应用到图数据领域。
受到深度学习领域进展的驱动,研究人员在设计图神经网络的架构时借鉴了卷积网络、循环网络和深度自编码器的思想。为了应对图数据的复杂性,重要运算的泛化和定义在过去几年中迅速发展。
神经网络算法的局限性是:可以使用均值函数但是这个函数将获取嵌入的平均值,并将其分配为新的嵌入。但是,很容易看出,对于某些不同的图,它们会给出相同的嵌入,所以,均值函数并不是单射的。
即使图不同,节点v和v’的平均嵌入聚合(此处嵌入对应于不同的颜色)将给出相同的嵌入。
这里真正重要的是,你可以先用某个函数f(x)将每个嵌入映射到一个新的嵌入,然后进行求和,得到一个单射函数。
在证明中,它们实际上显式地声明了这个函数f,这需要两个额外条件,即X是可数的,且任何多重集都是有界的。
并且事实上,在训练中并没有任何东西可以保证这种单射性,而且可能还会有一些图是GIN无法区分的,但WL可以。所以这是对GIN的一个很强的假设,如果违反了这一假设,那么GIN的性能将受到限制。
神经网络算法的普适性是:研究模型的局限性通常更容易获得对模型的洞察。毕竟,网络所不能学到的关于特定特征的知识在应用时独立于训练过程。
此外,通过帮助我们理解与模型相关的任务的难度,不可能性结果(impossibilityresult)有助于得出关于如何选择模型超参数的实用建议。以图分类问题为例。
训练一个图分类器需要识别是什么构成了一个类,即在同一个类而非其他类中找到图共享的属性,然后决定新的图是否遵守所学习到的属性。
然而,如果可以通过一定深度的图神经网络(且测试集足够多样化)证明上述决策问题是不可能的,那么我们可以确定,同一个网络将不会学习如何正确地对测试集进行分类,这与使用了什么学习算法无关。
因此,在进行实验时,我们应该把重点放在比下限更深的网络上。
网络的异构性表现在传输介质、数据编码方式、链路控制协议以及不同的数据单元格式和转发机制,这些特点分别在物理层和数据链路层协议中定义。
在三个真实世界的异质图上的大量实验结果不仅显示了我们所提出的模型比现有的模型更优越的性能,而且也显示了它潜在的良好的图分析的可解释性。
网络的异构注意:对于包含不同类型节点和链接的异构图,图神经网络并没有充分考虑到。异构性和丰富的语义信息给异构图的神经网络设计带来了巨大的挑战。
近年来,注意力机制在深度学习领域取得了令人瞩目的进展,其巨大的潜力已经在各个领域得到了充分的展示。
指图形神经网络。生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元。
每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。
相关信息:人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型。
设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。