- 昇思MindSpore创新训练营·长三角站开始报名!
昇思MindSpore
人工智能自然语言处理深度学习
一、介绍为充分发挥长三角研究型大学联盟教学实践基地共建共享功能,加强华东高校优秀青年学子的交流与互动,提供学生与产业界接触的机会,上海交通大学与华为技术有限公司共同发起,面向长三角研究型大学学生开设昇思MindSpore创新训练营。本次训练营以实践项目和业界需求为牵引,以学生实践为主线,让学生在实践的过程中学习和实践人工智能相关知识,掌握相关技术和工具,紧跟业界最新趋势,加深对人工智能行业的认识,
- OPPO未来科技大会,科技感满满!你最爱哪些黑科技呢?
冬天不冷了
#OPPO未来科技大会#OPPO携手IHSMarkit发布《智能互融:借助5G、人工智能和云技术,释放机遇》白皮书,表明人工智能、云技术和边缘设备、互联和物联网的协同努力,将为企业和消费者带来价值。看了一下早上的,是说明年绿厂要发不少好玩的产品,比如智能手表AR眼镜之类的,有些可能跟Reno3一块发,对外是说构建生态万物互联,其实就是多卖几样多赚钱,然后用这钱砸了搞技术赚更大的钱,毕竟现场说了未来
- 2020-01-26
构建幸福
李云焦点解决短期治疗网络初级19坚持分享第(48)(10)(81)天2020.01.26星期日今天的约练。真正的来访者角色情绪真的是很无法形容的那种伤痛。咨询师静静的倾听、陪伴、静静的倾听、陪伴、稳稳地贴着来访者。倾听、陪伴、同理,真的是伤心痛绝。咨询师倾听、陪伴、同理,紧紧地贴着。咨询师紧紧抓住来访者的关键的话语,围着一条主线任凭来访者情绪宣泄,以来访者为主,被者带进去,跳出来,再进去跟着来访者
- 大模型核心概念 | 嵌入模型(Embedding)、向量模型(Vector Model)
一、核心概念解析1.1嵌入模型(Embedding)作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:文本嵌入:如将语句转换为1536维向量,使"机器学习"与"深度学习"的向量余弦相似度达0.92跨模态嵌入:支持图像与文本的联合向量空间映射,如CLIP模型实现文图互搜1.2向量模型(VectorModel)作为嵌入技术的下游应用体系,主要包含两大方向
- Python实现神经网络算法指南
代码编织匠人
python神经网络算法
Python实现神经网络算法指南神经网络是一种模拟人脑神经元结构进行信息处理的机器学习算法。在深度学习领域中,神经网络是最为强大的算法之一。Python作为一门简单易学的编程语言,也成为了许多人选择实现神经网络算法的首选语言。在本篇文章中,我们将通过Python代码来实现神经网络算法。导入必要的库为了实现神经网络算法,我们需要导入一些必要的Python库,包括numpy和matplotlib。其中
- 2025年最流行跑分最高的图片理解大模型调研报告
2025年最流行跑分最高的图片理解大模型调研报告引言当前,图片理解大模型正处于快速演进阶段,其技术发展呈现多维度深化与融合的特征。从技术演进方向来看,多模态融合已成为核心趋势之一,文本、图像、视频等不同模态的交互与协同能力显著提升。大型视觉-语言模型(LVLMs)作为人工智能领域的重要突破,标志着多模态理解与交互进入变革性发展阶段,尽管当前模型在各类任务中表现出色,但在细粒度视觉任务等基础能力层面
- 基于DTLC-AEC与DTLN的轻量级实时语音增强系统设计与实现
神经网络15044
仿真模型神经网络机器学习图像处理cnn人工智能机器人
基于DTLC-AEC与DTLN的轻量级实时语音增强系统设计与实现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。1.引言在当今的互联网通信时代,实时语音通信已成为人们日常生活中不可或缺的一部分。然而,语音通信质量常常受到回声、背景噪声等因素的严重影响。为了解决这些问题,我们需要高效的语音增强技术。本文将详细介绍如何将DTLC-AEC(深度学习回声消
- 第 20 课时:GPU 管理和 Device Plugin 工作机制(车漾)
阿里云云原生
CNCFX阿里巴巴云原生技术公开课阿里云KubernetesCNCF专家团队CNCF专家团队CNCF专家团队Kubernetes
本文将主要分享以下几个方面的内容:需求来源GPU的容器化Kubernetes的GPU管理工作原理课后思考与实践需求来源2016年,随着AlphaGo的走红和TensorFlow项目的异军突起,一场名为AI的技术革命迅速从学术圈蔓延到了工业界,所谓AI革命从此拉开了帷幕。经过三年的发展,AI有了许许多多的落地场景,包括智能客服、人脸识别、机器翻译、以图搜图等功能。其实机器学习或者说是人工智能,并不是
- 袁瑞红漯河网络初级六期坚持分享第1076天《总会有办法的》
袁瑞红
今天的课没有办法去上了,只好给老师请假,老师打来电话可能是在忙没看到,快到11点拿出手机才看到留言,说没时间没事,到时候我有时间了给我督导,挺温暖的,这就是学习的动力,不管遇到什么总有人懂你理解你。这样也好,听听录音看看书,让自己沉淀沉淀,而不是急急忙忙的往前冲,学着丢着。好多知识都是通的,只要形成自己的理论体系,再慢慢的填充丰满起来就是自己的东西了,还有就是修炼自己的气质和气场,不能遇事就慌,不
- 智慧后厨检测算法构建智能厨房防护网
智驱力人工智能
人工智能算法高温预警行为识别口罩识别食品安全手套识别
智慧后厨检测:构建安全洁净厨房的智能解决方案背景:传统后厨管理的痛点与智慧化需求餐饮行业后厨管理长期面临操作规范难落实、安全隐患难察觉、卫生状况难追溯等痛点。传统人工巡检效率低、覆盖面有限,难以实现24小时无死角监管。例如,厨师未佩戴口罩或手套、违规使用手机、动火离人等行为,可能引发食品安全事故或火灾风险。随着人工智能技术的成熟,智慧后厨检测系统通过集成多种算法,实现了对后厨人员行为、环境卫生、设
- 《Python Web 框架深度剖析:Django、Flask 与 FastAPI 的选择之道》
清水白石008
课程教程学习笔记开发语言python前端django
《PythonWeb框架深度剖析:Django、Flask与FastAPI的选择之道》开篇引入:从“胶水语言”到Web架构核心Python,自1991年由GuidovanRossum发布以来,凭借其简洁优雅的语法和强大的生态系统,逐渐成为全球最受欢迎的编程语言之一。它不仅在数据科学、人工智能、自动化脚本等领域大放异彩,更在Web开发领域构建起一套成熟的技术体系。作为一位长期从事Python开发与教
- 目标检测-YOLOv5
wydxry
深度学习目标检测YOLO人工智能深度学习
YOLOv5介绍YOLOv5是YOLO系列的第五个版本,由Ultralytics团队发布。虽然YOLOv5并非JosephRedmon原团队发布,但它在YOLOv4的基础上进行了重要的优化和改进,成为了深度学习目标检测领域中的热门模型之一。YOLOv5的优势不仅体现在其性能上,还包括其简洁易用、部署便捷的特点。相较于YOLOv4,YOLOv5对于代码框架的重构、推理速度的提升,以及模型的轻量化等方
- SFBT工作的基本原则、治疗理念
和颜悦色2018
薛明伦焦点初级九期焦作坚持原创分享第78天20180513红皮书P49SFBT工作的基本原则1.来访者的方法如果有效,就不需改变;2.来访者或治疗师所做的如果无效,就做些不同的事情;3.相信来访者的解决之道即在他的经验之中;4.治疗没有所谓的失败,来访者的反应正是一种反馈;5.若希望治疗能够短期,视每次与来访者见面的机会都是最后一次或唯一的一次。SFBT的治疗理念1.强调正向积极面与问题解决的方向
- 【DeepSeek实战】10、模型上下文协议(MCP)全解析:从核心架构到实战应用,揭秘AI协作的“凤雏”之力
无心水
人工智能架构DeepSeek实战模型上下文协议MCPCSDN技术干货DeepSeekAI大模型
在人工智能技术飞速发展的今天,大型语言模型(LLM)的能力不断突破,但跨模型协作、上下文一致性维护等问题却成为制约AI系统向更智能、更协同方向发展的瓶颈。模型上下文协议(ModelContextProtocol,MCP)作为专为大模型设计的标准化通信框架,如同“凤雏”之于“卧龙”,为解决这些核心问题提供了关键方案。本文将全面解析MCP的核心概念、架构设计、实操代码、应用案例及未来趋势,通过5000
- 中原焦点团队焦点初级32期孙晓娟2022年元月7日坚持分享第️48天
85b9745cfed8
这个世界上,每个人的经历都不一样。不必完全求同,但求互相尊重。与人交往,我们要做的第一件事就是给予对方足够的尊重。尊重别人的兴趣,尊重别人的三观,尊重彼此的差异。只有你尊重别人,别人才会尊重你。平等对待,相互尊重,是人与
- 【DW11月-深度学习】Task03前馈神经网络
沫2021
参考链接:https://datawhalechina.github.io/unusual-deep-learning/#/4.%E5%89%8D%E9%A6%88%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C一、神经元模型2.1神经元1943年,美国神经生理学家沃伦·麦卡洛克(WarrenMcCulloch)和数学家沃尔特·皮茨(WalterPitts)对生物神经元进行
- AI交互的初期魅力与后期维护挑战
AI交互的初期魅力与后期维护挑战引言在当今数字化时代,人工智能(AI)技术正迅速渗透到各个领域,特别是人机交互方面。许多开发者、设计师和用户在初次与AI交互时,往往感受到一种“一时爽”的快感。这种交互方式看似高效、智能,能够快速响应需求,提供即时反馈。然而,随着时间的推移,这种初期魅力往往会转化为高昂的后期维护成本。本文将深入讨论AI交互的这一双面性,重点分析细节沟通不足以及UI设计中AI难以处理
- 仓库货物检测:基于YOLOv5的深度学习应用与UI界面开发
YOLO实战营
YOLO深度学习ui目标跟踪目标检测人工智能
一、引言随着电商和物流行业的快速发展,仓库货物管理已经成为企业运营中至关重要的环节。为了提高仓库管理的效率和准确性,越来越多的企业开始应用自动化技术来完成货物的盘点、分类、分拣等任务。传统的货物管理方式通常依赖人工检查,不仅效率低下,而且容易出现误差。为了克服这些问题,利用计算机视觉和深度学习技术来实现仓库货物的自动化检测成为了一种有效的解决方案。本博客将介绍如何使用YOLOv5进行仓库货物检测,
- 【云原生】Helm来管理Kubernetes集群的详细使用方法与综合应用实战
景天科技苑
云原生K8S零基础到进阶实战云原生kubernetes容器Helmk8sk8s集群
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi,flask等框架,云原生k8s,linux,she
- Transformer:自注意力驱动的神经网络革命引擎
大千AI助手
人工智能Python#OTHERtransformer神经网络深度学习google人工智能机器学习大模型
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从语言理解到多模态智能的通用架构基石⚙️一、核心定义与历史意义Transformer是由Google团队在2017年论文《AttentionIsAllYouNeed》中提出的深度学习架构,其颠覆性创新在于:完全摒弃RNN/CNN:仅依赖自注意力机制(S
- [特殊字符] LLM(大型语言模型):智能时代的语言引擎与通用推理基座
大千AI助手
人工智能Python#OTHER语言模型人工智能自然语言处理LLM大模型Transformer
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从千亿参数到人类认知的AI革命一、核心定义与核心特征LLM(LargeLanguageModel)是基于海量文本数据训练的深度学习模型,通过神经网络架构(尤其是Transformer)模拟人类语言的复杂规律,实现文本理解、生成与推理任务。其核心特征可概
- 深度学习模型开发部署全流程:以YOLOv11目标检测任务为例
你喜欢喝可乐吗?
deeplearningdeploy深度学习YOLO目标检测
深度学习模型开发部署全流程:以YOLOv11目标检测任务为例深度学习模型从开发到部署的完整流程包含需求分析、数据准备、模型训练、模型优化、模型测试和部署运行六大核心环节。YOLOv11作为新一代目标检测模型,不仅延续了YOLO系列的高效实时性能,还在检测精度和泛化能力上取得显著突破,使其成为工业质检、安防监控、自动驾驶等领域的理想选择。本文将详细阐述这一完整流程,并结合YOLOv11的具体实现,提
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- Python面向对象编程(OOP)详解:通俗易懂的全面指南
盛夏绽放
python开发语言有问必答
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。文章目录Python面向对象编程(OOP)详解:通俗易懂的全面指南一、OOP基本概念1.什么是面向对象编程?2.OOP的四大支柱3.核心概念对比表二、类和对象1.类(Class)vs对象(Object)2.类结构详解三、OOP三大特性详解1.封装(Encapsulation)2.继承(Inherita
- 深度学习:让 AI 拥有 “思考” 能力的核心技术
田园Coder
人工智能科普人工智能科普
1.深度学习:突破传统的AI“进阶版”1.1什么是深度学习?深度学习是机器学习的一个分支,它通过模拟人脑神经网络的多层结构,让AI能够自动学习数据中的复杂特征,从而完成更高级的认知任务。例如,传统机器学习需要人类手动提取“猫有尖耳朵、胡须”等特征,而深度学习能直接从原始图片中,自主学习从像素到轮廓、再到整体形态的多层特征,最终实现更精准的识别。这种“自主提取特征”的能力,让深度学习突破了传统AI的
- 马斯克整出的半仙儿,Chat GPT会让多少白领失业?可能会带来哪些变化?
良辰美景5566
这几天,ChatGPT火了,是美国一家叫OpenAI的高科技公司研发的,背后的投资人是谁?——埃隆马斯克!这哥们儿只要一出手,注定就和新奇呀伟大呀啥的绑在一起了,他搞的项目,比如特斯拉、星链、脑机接口,光听名字就透着不俗。很多人纳闷儿,他这次搞得ChatGPT是个啥玩意儿?简单说就是一个人工智能聊天软件,这个软件比以往的智能聊天软件强在哪儿?这么说吧,这简直就是个半仙儿啊。如果您是一位老人,这个C
- PyTorch torch.no_grad() 指南(笔记)
拉拉拉拉拉拉拉马
pytorch人工智能python笔记深度学习
PyTorchtorch.no_grad()权威在PyTorch深度学习框架中,高效的显存管理对于训练复杂模型和执行大规模推理任务至关重要。显存不足(OutOfMemory,OOM)错误是开发者经常面临的挑战之一。torch.no_grad()作为PyTorch提供的一个核心工具,能够在推理(inference)和验证(validation)阶段显著优化显存使用并提升计算速度。本报告旨在全面、深入
- 【深度学习基础】PyTorch中model.eval()与with torch.no_grad()以及detach的区别与联系?
目录1.核心功能对比2.使用场景对比3.区别与联系4.典型代码示例(1)模型评估阶段(2)GAN训练中的判别器更新(3)提取中间特征5.关键区别总结6.常见问题与解决方案(1)问题:推理阶段显存爆掉(2)问题:Dropout/BatchNorm行为异常(3)问题:中间张量意外参与梯度计算7.最佳实践8.总结以下是PyTorch中model.eval()、withtorch.no_grad()和.d
- 量子计算与AI融合的技术突破与实践路径
量子计算与人工智能的融合正开启一个全新的技术纪元,这种"量智融合"不是简单的技术叠加,而是多领域、多学科的横向连接,通过协同创新实现非线性增长。本文将深入探讨这一领域的最新进展、技术实现路径以及行业应用案例。电子-光子-量子一体化芯片:硬件基础突破2025年7月,美国波士顿大学、加州大学伯克利分校和西北大学团队联合开发出全球首个电子-光子-量子一体化芯片系统。这一突破性成果发表在《自然·电子学》杂
- 117、Python机器学习:数据预处理与特征工程技巧
多多的编程笔记
python机器学习开发语言
Python开发之机器学习准备:数据预处理与特征工程机器学习是当前人工智能领域的热门方向之一。而作为机器学习的核心组成部分,数据预处理与特征工程对于模型的性能有着至关重要的影响。本文将带领大家了解数据预处理与特征工程的基本概念,以及它们在实际应用场景中的重要性。数据预处理数据预处理是机器学习中的第一步,它的主要目的是将原始数据转换成适合进行机器学习模型训练的形式。就像我们在做饭之前需要清洗和准备食
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR