chinese-bert-wwm-ext

from transformers import BertTokenizer, BertModel
import torch

tokenizer = BertTokenizer.from_pretrained("hfl/chinese-bert-wwm-ext")
model = BertModel.from_pretrained("hfl/chinese-bert-wwm-ext")

batch_sentence = [
    "这是第一句话",
    "这是第二句话",
    "第三句,有点长了"
]


token_tensor = tokenizer(batch_sentence, padding=True, truncation=True, max_length=10, return_tensors='pt')

print(token_tensor)

print(token_tensor["input_ids"].shape)

output = model(token_tensor["input_ids"])

print(output[0].shape)
print(output[1].shape)

结果:

{'input_ids': tensor([[ 101, 6821, 3221, 5018,  671, 1368, 6413,  102,    0,    0],
        [ 101, 6821, 3221, 5018,  753, 1368, 6413,  102,    0,    0],
        [ 101, 5018,  676, 1368, 8024, 3300, 4157, 7270,  749,  102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
        [1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
torch.Size([3, 10])
Some weights of the model checkpoint at hfl/chinese-bert-wwm-ext were not used when initializing BertModel: ['cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
torch.Size([3, 10, 768])
torch.Size([3, 768])

你可能感兴趣的:(chinese-bert-wwm-ext)