- sklearn 支持向量机实践总结
可爱的红薯
pythonsklearn支持向量机pythonsklearn支持向量机
转自http://www.cnblogs.com/pinard/p/6117515.html之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learnSVM算法库的使用做一个小结。scikit-learnSVM算法库封装了libsvm和liblinear的实现,仅仅重写了算法了接口部分。1.scikit-learnSVM算法库使用概述sciki
- 加州房价数据集加载出错:无法获取数据,HTTP Error : Forbidden
code_welike
http网络协议网络python
加州房价数据集加载出错:无法获取数据,HTTPError:Forbidden在使用Python的sklearn库中,我们可以很方便地获取一些常用的数据集。在加载加州房价数据集时,有时会遇到“HTTPError:Forbidden”的错误提示,导致无法获取数据。这个问题的出现可能是因为我们的IP被限制了。那么该如何解决这个问题呢?解决方案:1.更换IP地址:首先,我们应该排除IP被限制的可能性。可以
- 解决Python中加载sklearn加州房价数据集出错的问题
冰雪之境
pythonsklearn开发语言Python
解决Python中加载sklearn加州房价数据集出错的问题在使用Python的scikit-learn库进行机器学习任务时,我们经常需要加载各种数据集。其中,加州房价数据集是一个常用的示例数据集之一,用于回归问题的训练和测试。然而,有时在加载加州房价数据集时可能会遇到HTTP错误的问题,具体表现为"HTTPError:HTTPError:Forbidden"。本文将介绍如何解决这个问题,并提供相
- 【完整版解决方案】sklearn加州房价数据集出错 housing = fetch_california_housing() HTTPError: HTTP Error 403: Forbidden
getalong
sklearn人工智能数据仓库python
完整解决方案(一键复制)代码替换housing=fetch_california_housing()翻了几条解决方案要么不全,要么收费,烦死个人下面给出完整解决方案!!!1、下载数据集原始数据集:cal_housing.tgz2、放置数据集查找本地位置,执行代码后进入目标文件夹。fromsklearnimportdatasetsdata_home=datasets.get_data_home()放
- sklearn库安装
吧啦吧啦吡叭卜
sklearn人工智能python
已经安装了numpy、matplotlib、scipy这些库一直报错×pythonsetup.pyegg_infodidnotrunsuccessfully.│exitcode:1╰─>[15linesofoutput]The'sklearn'PyPIpackageisdeprecated,use'scikit-learn'ratherthan'sklearn'forpipcommands.Her
- 深度学习分类回归(衣帽数据集)
何仙鸟
深度学习分类回归
一、步骤1加载数据集fashion_minst2搭建classNeuralNetwork模型3设置损失函数,优化器4编写评估函数5编写训练函数6开始训练7绘制损失,准确率曲线二、代码导包,打印版本号:importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportsklearnimport
- [Machine Learning] K-means算法
进阶的小蜉蝣
machinelearning算法kmeans机器学习
HuBERT预训练过程中会用到K-means算法,本文简单介绍一下K-means算法的基本流程。简单地讲,K-means就是给特征向量集进行聚类。给定一个特征向量集{X}和目标聚类数N,K-means会不断迭代,直到X被分成N类,且每一类的中心点不再明显变化。先看一个简单例子:fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotli
- 机器学习之学习笔记
孤城laugh
机器学习学习笔记人工智能python
机器学习-学习笔记1.简介2.算法3.特征工程3.1数据集3.2特征提取3.3特征预处理3.4特征降维4.分类算法4.1`sklearn`转换器和估计器4.2K-近邻算法(KNN)4.3模型选择与调优4.4朴素贝叶斯算法4.5决策树4.6集成学习方法之随机森林5.回归算法5.1线性回归5.2过拟合与欠拟合5.3岭回归5.4逻辑回归(实际上是分类算法,用于解决二分类问题)6.聚类算法1.无监督学习2
- kNN算法:对红酒数据进行分类
阿拉保
算法分类数据挖掘
第2关使用sklearn中的kNN算法进行分类fromsklearn.neighborsimportKNeighborsClassifierdefclassification(train_feature,train_label,test_feature):'''使用KNeighborsClassifier对test_feature进行分类:paramtrain_feature:训练集数据:para
- MATLAB基础应用精讲-【数模应用】主成分(pca)分析(附python代码实现)
林聪木
matlab人工智能大数据
目录前言知识储备降维概述算法原理什么是PCAPCA降维过程PCA算法数学步骤选择主成分个数(即k的值)sklearn中参数的解释数学模型协方差协方差矩阵编辑编辑原理推导编辑编辑编辑编辑实际操作主成分分析的计算方法方法1.协方差+特征值分解方法2:奇异值分解对比不同方法计算效率物理意义算法步骤SPSSAU主成分(pca)分析说明1、信息浓缩2、权重计算3、综合得分【综合竞争力】疑难解惑成分得分后用于
- python代码实现支持神经网络对鸢尾花分类
邀_灼灼其华
机器学习及概率统计python神经网络分类sklearn
1、导入支持向量机模型,划分数据集fromsklearnimportdatasetsfromsklearnimportsvmiris=datasets.load_iris()iris_x=iris.datairis_y=iris.targetindices=np.random.permutation(len(iris_x))iris_x_train=iris_x[indices[:-10]]iri
- 构建神经网络之sklearn(完善)
邪恶的贝利亚
神经网络sklearn机器学习
1.数据预处理1.缺失值importpandasaspd#假设我们有一个DataFramedfprint(df.isnull().sum())#查看每一列缺失值的数量数值型数据:fromsklearn.imputeimportSimpleImputer#对于数值型数据,使用均值填充imputer=SimpleImputer(strategy='mean')#可选:'mean','median','
- 【Python-ML】SKlearn库性能指标ROC-AUC
fjssharpsword
Bigdatapython专栏
#-*-coding:utf-8-*-'''Createdon2018年1月19日@author:Jason.F@summary:ROC(receiveroperatorcharacteristic,基于模型真正率和假正率等性能指标评估分类模型'''importpandasaspdfromsklearn.preprocessingimportLabelEncoderfromsklearn.cros
- 【python 机器学习】sklearn ROC曲线与AUC指标
人才程序员
杂谈机器学习pythonsklearn人工智能深度学习神经网络目标检测
文章目录sklearnROC曲线与AUC指标1.什么是ROC曲线与AUC?通俗介绍:学术解释:2.在`sklearn`中绘制ROC曲线与计算AUC2.1导入库和数据2.2加载数据集2.3训练模型2.4预测概率2.5计算FPR、TPR和AUC2.6绘制ROC曲线3.解析ROC曲线和AUC值4.总结sklearnROC曲线与AUC指标在机器学习中,评估分类模型的性能不仅仅依赖于准确率,还需要使用一些更
- AI探索笔记:线性回归
安意诚Matrix
机器学习笔记人工智能笔记线性回归
前言写这篇博客,主要是自己来练练手。网络上教程已经是数不胜数,也都讲得非常清楚了。但自己不动手,知识和能力还是别人的。下面分别用传统方法(sklearn)和神经网络(pytorch)来解决线性回归问题。内容什么是线性回归线性回归(LinearRegression)是统计学和机器学习中最基础且广泛使用的预测模型,用于建立**自变量(输入特征)与因变量(输出目标)**之间的线性关系模型。其核心思想是通
- AI人工智能机器学习之聚类分析
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。2、聚类分析-简介聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。sklearn.cluster提供了多种聚类算法K均值聚类(K-MeansCl
- 基于KNN的鸢尾花分类预测模型
溪海莘
分类数据挖掘人工智能
基于KNN的鸢尾花分类预测模型.让机器实现对鸢尾花的分类分析,它会怎么做呢?我们首先列举出可能需要的要素:数据,模型和算法,效果评估。机器学习,它也是需要对自己的学习效果进行评估,因为它需要根据结果来调整参数。大多数情况需要人来介入这个过程,人们需要根据自身的经验来选取一些合适的参数,但是“爱偷懒”的数据科学家同时也提出一些自动化的程序来实现这一步骤。一、鸢尾花数据集1.1利用sklearn库导入
- (一)基于车险案例的多模型预测评估、箱线图绘制
renshixinghuo
python机器学习开发语言
一、案例引入(一)问题提出回访问卷是一种常用的、用于评估客户质量的手段,基于回访问卷所得数据,我们一定程度上能够推断具有什么样特征的用户可能更具有产品依赖性。因此,基于某车险回访问卷,我们利用sklearn库中各类模型对其进行预测,并展示此案例中各模型预测的表现情况。(二)原始数据原始数据包含用户ID、性别、年龄、所在地区代码、年保费、沟通渠道、是否有驾照、是否购买过车辆、车龄、是否发生过车祸、是
- 使用Scikit-Learn决策树:分类问题解决方案指南
范范0825
scikit-learn决策树分类
如何用scikit-learn的决策树分类器解决分类问题1.引言在本教程中,我们将探讨如何使用scikit-learn(sklearn)库中的决策树分类器解决分类问题。决策树是一种强大的机器学习算法,能够根据输入数据的特征属性学习决策规则,并用于预测新数据的分类标签。2.理论基础与算法介绍2.1决策树算法概述决策树是一种树形结构,每个非叶节点表示一个特征属性上的决策,每个分支代表一个决策结果的可能
- 朴素贝叶斯原理及sklearn中代码实战
Lewis@
sklearn概率论机器学习
朴素贝叶斯(NaiveBayes)是一类基于贝叶斯定理的简单而有效的分类算法。它假设特征之间是相互独立的,即在给定目标变量的情况下,每个特征都不依赖于其他特征。尽管这个假设在实际中很难成立,朴素贝叶斯在许多场景下仍表现得非常好,特别是对于文本分类等高维数据的应用。1.贝叶斯定理贝叶斯定理表明给定一个事件发生的条件下另一个事件发生的概率:P(A∣B)=P(B∣A)⋅P(A)P(B){P(A|B)=\
- sklearn TfidfVectorizer使用教程
Cachel wood
python机器学习和数据挖掘sklearnpython机器学习开发语言django人工智能数据挖掘
文章目录TfidfVectorizer代码解释:TfidfVectorizer得到较长的“词汇”代码解释TfidfVectorizerTfidfVectorizer是scikit-learn库中用于将文本数据转换为TF-IDF(词频-逆文档频率)特征矩阵的强大工具。下面为你提供一个详细的使用教程,涵盖基本使用、参数设置、中文处理等方面。安装依赖库确保你已经安装了scikit-learn和panda
- sklearn.ConfusionMatrixDisplay可视化混淆矩阵
Cachel wood
python机器学习和数据挖掘sklearn矩阵人工智能python机器学习vue.jsjava
文章目录ConfusionMatrixDisplay详细解释更多定制化ConfusionMatrixDisplayConfusionMatrixDisplay是scikit-learn库中用于可视化混淆矩阵的一个实用工具。混淆矩阵是一种常用的评估分类模型性能的工具,它可以直观地展示模型在各个类别上的预测结果与真实标签之间的关系。下面详细介绍如何使用ConfusionMatrixDisplay进行混
- 吴恩达-机器学习-多元线性回归模型代码
StrawBerryTreea
机器学习机器学习线性回归python吴恩达
吴恩达《机器学习》2022版第一节第二周多元线性回归房价预测简单实现以下以下共两个实验,都是通过调用sklearn函数,分别实现了一元线性回归和多元线性回归的房价预测。一、一元线性回归importnumpyasnpnp.set_printoptions(precision=2)fromsklearn.linear_modelimportLinearRegression#输入数据X_train=np
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- Python:第三方库
衍生星球
python第三方库
1.第三方Python库库名用途pip安装指令NumPy矩阵运算pipinstallnumpyMatplotlib产品级2D图形绘制pipinstallmatplotlibPIL图像处理pipinstallpillowsklearn机器学习和数据挖掘pipinstallsklearnRequestsHTTP协议访问pipinstallrequestsJieba中文分词pipinstalljieba
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- 第三章 回归训练实战(以预测新冠感染人数为例)
不吃香菜(扣1复活版)
深度学习入门笔记深度学习人工智能
完整项目代码(预测第三天的新冠感染人数)fromsklearn.feature_selectionimportSelectKBestfromsklearn.feature_selectionimportchi2importcsv#读CSVimportnumpyasnpimporttimeimportmatplotlib.pyplotaspltimportpandasaspdfromtorchimp
- Python中的决策树算法探索
Soft_Leader
算法python决策树
在Python中,决策树算法是一种常用的机器学习技术,用于分类和回归问题。下面我们将探索如何使用Python中的scikit-learn库来实现决策树算法,并简要介绍其基本概念和用法。1.安装必要的库如果你还没有安装scikit-learn库,你可以使用pip来安装它:bash复制代码pipinstall-Uscikit-learn2.导入必要的库和模块python复制代码fromsklearn.
- sklearn_pandas.DataFrameMapper的用法
zoujiahui_2018
#Pytorchsklearnpandas人工智能
文章目录介绍主要作用基本用法示例对不同列应用不同的转换器对多列应用相同的转换器输出为PandasDataFrame注意事项转换器的适用性:输出格式:与scikit-learn的兼容性:介绍DataFrameMapper是sklearn-pandas库中的一个工具,主要用于将PandasDataFrame与scikit-learn的预处理工具无缝结合。它的作用是将DataFrame的列映射到特定的特
- 【python 机器学习】sklearn转换器与预估器
人才程序员
杂谈python机器学习sklearn人工智能目标检测深度学习神经网络
文章目录sklearn转换器与预估器1.什么是转换器(Transformer)?通俗介绍:学术解释:2.什么是预估器(Estimator)?通俗介绍:学术解释:3.转换器与预估器的共同点4.转换器与预估器的区别5.使用`sklearn`中的转换器与预估器5.1示例:数据标准化(转换器)5.2示例:模型训练与预测(预估器)6.使用`Pipeline`结合转换器与预估器7.总结sklearn转换器与预
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag