8DOER: Dual Cross-Shared RNN for Aspect Term-Polarity Co-Extraction(2020.10.22)

DOER: Dual Cross-Shared RNN for Aspect Term-Polarity Co-Extraction

Doer:面向方面项-极性共抽取的双交叉共享RNN

Abstract

  • This paper focuses on two related subtasks of aspect-based sentiment analysis, namely aspect term extraction and aspect sentiment classification, which we call aspect term-polarity co-extraction.
    本文重点研究了基于方面的情感分析的两个相关子任务,即方面项提取和方面情感分类,我们称之为方面项-极性共抽取
  • The former task is to extract aspects of a product or service from an opinion document, and the latter is to identify the polarity expressed in the document about these extracted aspects.
    前者的任务是从意见文档中提取产品或服务的方面,而后者的任务是识别文档中关于这些提取的方面所表达的极性。
  • Most existing algorithms address them as two separate tasks and solve them one by one, or only perform one task, which can be complicated for real applications.
    大多数现有的算法将它们作为两个独立的任务来处理,并逐个解决它们,或者只执行一个任务,这在实际应用中可能会很复杂。
  • In this paper, we treat these two tasks as two sequence labeling problems and propose a novel Dual cross-shared RNN framework (DOER) to generate all aspect term-polarity pairs of the input sentence simultaneously.
    在本文中,我们将这两个任务视为两个序列标记问题,并提出了一种新颖的双重交叉共享RNN框架(DOER),可同时生成输入句子的所有方面项-极性对。
  • Specifically, DOER involves a dual recurrent neural network to extract the respective representation of each task, and a cross-shared unit to consider the relationship between them.
    具体来说,DOER涉及一个双重递归神经网络以提取每个任务的各自表示,以及一个交叉共享的单元来考虑它们之间的关系。
  • Experimental results demonstrate that the pro-posed framework outperforms state-of-the-art baselines on three benchmark datasets.
    实验结果表明,提出的框架在三个基准数据集上的性能优于最新的基线。

一、Introduction

Aspect terms extraction (ATE) and aspect sentiment classification (ASC) are two fundamental, fine-grained subtasks of aspect-based sentiment analysis.
-‘方面术语提取(ATE)’和‘方面情感分类(ASC)’是基于方面的情感分析的两个基本的细粒度子任务。

二、Methodology

The proposed framework is shown in Figure 3a.We will first formulate the aspect term-polarity co-extraction problem and then describe this frame-work in detail in this section.
提议的框架如图3a所示,我们将首先提出方面项-极性共提取问题,然后在本节中详细描述此框架。

  • 2.1 Problem Statement
  • We solve it as two sequence labeling tasks.Formally, given a review sentence S with n words from a particular domain, denoted by S={wi|i=1,…,n}.
    我们将其作为两个序列标记任务来解决。形式上,给定一个具有来自特定域的n个单词的评论句子S,表示为S = {wi | i = 1,…,n}。
    8DOER: Dual Cross-Shared RNN for Aspect Term-Polarity Co-Extraction(2020.10.22)_第1张图片
    Ta中的标记B,I和O分别代表方面术语的开头,方面术语的内部和其他词。标签PO,NT,NG和CF分别指示极性类别:正,中性,负和冲突。Tp中的标签O表示Ta中的其他单词。
    8DOER: Dual Cross-Shared RNN for Aspect Term-Polarity Co-Extraction(2020.10.22)_第2张图片

三、Experiments

  • 3.4 Baseline Methods
    8DOER: Dual Cross-Shared RNN for Aspect Term-Polarity Co-Extraction(2020.10.22)_第3张图片
    Table 2: F1 score (%) comparison of all systems for aspect term-polarity pair extraction.
    We use two abbreviations AuL and AuS for the ablation study. AuL denotes the auxiliary task of aspect term length enhancement, and AuS denotes the auxiliary task of sentiment lexicon enhancement.All baselines have publicly available codes
    在消融研究中,我们使用两个缩写AuL和AuS。 AuL表示方面项长度增强的辅助任务,而AuS表示情感词典增强的辅助任务。‘所有baseline有公开代码’。
    - 3.5 All baselines have publicly available codes
  • Comparison Results.:比较结果如表2所示,这是方面项-极性对的F1分数。 结果表明,我们的DOER在基线上获得了持续的改进。
  • Ablation Study.消融研究:为了测试Doer的每个组件的有效性,我们进行了消融实验,结果如‘表2’最后一块所示。
    与S-BiLSTM相比,S-BiReGU具有更好的性能,这一事实表明了REGU在我们的任务中的有效性。 这种残留架构使信息更有效地传输到下一层。
    在CSU的帮助下,S-BiReGU + CSU的性能要比没有它时更好。 我们认为,ATE和ASC之间的信息交互对于彼此改善至关重要。情感词典的另一项辅助任务也可以增强该框架的表示能力。
    作为S-BiReGU,CSU,AuL和AuS的整体,拟议的DOER实现了卓越的性能。 它主要得益于两个辅助任务的增强功能以​​及ATE和ASC两条单独路线的相互作用。
  • Results on ATE‘:
  • Visualization of Attention Scores in CSU

五、Conclusion

  • In this paper, we introduced a co-extraction task involving aspect term extraction and aspect sentiment classification for aspect-based sentiment analysis and proposed a novel framework DOER to solve the problem.
    本文针对基于方面的情感分析,提出了一种包括方面术语提取和方面情感分类的联合抽取任务,并提出了一种新的框架实施者来解决这一问题。
  • The framework uses a joint sequence labeling approach and focuses on the interaction between two separate routes for aspect term extraction and aspect sentiment classification.
    该框架使用联合序列标注方法,重点研究了两条独立路径之间的交互作用,用于特征词提取和特征情感分类。
  • To enhance the representation of sentiment and alleviate the difficulty of long aspect terms, two auxiliary tasks were also introduced in our framework.
    为了增强情感表达并减轻长术语方面的困难,我们的框架中还引入了两个辅助任务。
  • Experimental results on three bench-mark datasets verified the effectiveness of DOERand showed that it significantly outperforms the baselines on aspect term-polarity co-extraction.
    在三个基准数据集上的实验结果验证了DOER的有效性,并表明它在方面项-极性共提取方面明显优于基线。

你可能感兴趣的:(sentiment,analysis,nlp)